
ICSE04 1

Alternative Measures of Software Reliability

Herbert Hecht and Myron Hecht

SoHaR Incorporated, Culver City, California

Abstract

 Software failure rate, long a primary reliability measure, is difficult to apply in a

distributed computing environment with an uncontrolled number of active nodes and usage

patterns. Since it is not useful as a measure, it is also not a good prediction tool during software

development. Instead we assess reliability of software segments in terms of the severity of

system level effects of their failure modes and the extent of the protection (fault detection and

recovery) that is built into the program. Where the protection provisions cover all failure modes

that can cause high severity failures, and where the effectiveness of the provisions has been

established by test, the program may be considered reliable even in the absence of a quantitative

failure rate assessment.

We describe UML based FMEA procedures as a means of focusing of V&V activities on

coverage and effectiveness of protective measures, and recommend pursuit of these procedures

as a means of reducing the cost of high reliability software.

Key Words: Software reliability, software robustness, UML tools, software FMEA

1. Introduction
We were successful in developing a computer-aided procedure for software FMEA

except for the issue of software failure probability. Strictly speaking, failure probability is

required for criticality analysis rather than FMEA in the narrower sense, but most hardware

FMEA tools provide a column in the FMEA worksheet in which the part or assembly failure

probability for a given mission phase is entered. To generate a system FMEA that includes

hardware and software we need an expression for software failure probability for small code

segments (equivalent to hardware parts). We decided to leave that task to some future geniuses

and to focus on an alternative assessment of software reliability.

Our approach avoids two problems: (1) in a typical distributed computing environment

the number of failures per time interval is much more determined by usage factors than by

software reliability, making it necessary to find new approaches to the measurement of software

reliability; and (2) software reliability cannot be predicted bottom-up in the way in which

hardware reliability can be predicted from established parts failure rates.

Of course there are circumstances software and hardware failures can be subjected to the

same statistical treatment as will be discussed in the next section. Also, it is recognized that the

development and application environments affect failure probability but that does not help in

estimating the failure probability of a given small code segment in the same sense as a schematic

permits us to estimate the failure probability of a small electronic assembly. This dilemma is

treated in Section 3 where we are concerned with reliability evaluation prior to coding. Once

code is available for testing we should be in a better position to assess reliability, and the steps

necessary for realizing this are discussed in Section 4. Conclusions and recommendations are

presented in the final section of this paper.

ICSE04 2

2. Same Measure – Different Meaning
Some of the earliest quantitative work on software reliability concerned the decreasing

failure rate during test
1, 2

. These models were soon followed by others, the most widely used one

of which was that proposed by Musa
3
. All of these models shared the following assumptions:

• A large program being tested in a fixed computer environment

• Tests were being conducted by the developer

• Errors found during test were immediately corrected (or if they caused additional failures

these were ignored)

The models differed from each other in addressing discrete (time to next failure) or

continuous (failure rate) measures and in the failure reduction mechanism that was postulated.

Since then several other software reliability growth models have been proposed that differ from

those mentioned here primarily in the mathematical expression for the failure reduction process.

The AIAA Recommended Practice for Software Reliability
4
 lists these models as well as tools

that facilitate their implementation.

A factor that contributed to the wide acceptance of the Musa model was the emphasis on

execution time as the denominator of the failure rate expression. Other models had allowed

calendar time or equivalent intervals to be used, and that had led to inconsistent results except

where a very closely regulated test schedule was used (the same number of hours in each

calendar period).

Quite another interpretation of software failure rate is encountered when software is in

operation, say in a data processing center, where management is concerned about uninterrupted

service. The following hypothetical failure statistics illustrate this issue.

Table 1. Data Center Monthly Failures

Month Hardware Software

January 18 11

February 14 12

March 18 14

April 15 16

May 12 20

June 11 24

July 13 23

The data center manager, Mike, is convinced that he is faced with a major software

reliability problem. He calls a meeting where the software development supervisor, Sam, claims

that the number of failures attributed to software has nothing to do with software reliability but is

merely a reflection of the work environment. To support his position Sam produces the data

shown in Table 2 and explains

• Corrective change requests, an indication of software faults encountered, and an index of

reliability, have sharply decreased over the seven month period

• Total software change requests have gone up, increasing the workload of the department

and causing slower response to corrective change requests; this increases the time that a fault

remains in the operational software and the opportunity for it to cause failures

ICSE04 3

• The increasing number of adaptive and perfective change requests indicates that the

program is being used much more often and thus a larger number of failures can be expected due

a single fault.

Table 2. Monthly Software Change Request Summary

Month Total Corrective Adaptive Perfective

January 9 8 1 0

February 10 8 2 0

March 10 7 2 1

April 11 5 3 3

May 12 6 2 4

June 14 5 3 6

July 13 4 5 4

We don’t want to adjudicate the conflict between Mike and Sam, but we can understand

their positions. Is there any denying that the monthly number of software failures has roughly

doubled since the beginning of the year? And isn’t it true that the number of new faults found per

month has been cut in half? The most striking observation is that the concept of software failure

rate that is central to all the models mentioned in the beginning of this section is not easily

applied in an environment where

• The program is running on multiple computers with no control on execution time

• Inputs represent random user requests

• Operation cannot be interrupted to diagnose failures and correct newly found faults

We should also ask the data center manager whether the number of failures is really the

significant operating index. Perhaps the time lost due to the failures, or the effect of failures on

the operation of the enterprise may be of more importance, and if they are, what software

engineering measures are suitable?

This example has shown how difficult it is to obtain a meaningful measure of software

reliability even in an environment where data are freely available. We now turn to the problem of

predicting software reliability, first during the early stages of development and then after code is

available for testing.

3. Software Reliability before Implementation

When the need for a new program arises in an environment where avoidance of failure is a

top concern it is usual to formulate requirements for reliability based on the experience with

predecessor systems. Typical expressions from different environments are

• Not more than one system-wide loss of service a year

• Availability of core services of at least 0.9999999 (0.97)

• Restoration time not to exceed 10 minutes

ICSE04 4

All of these expressions

are meaningful at the system

level and may affect the top

level program design but

they are very difficult to

translate into requirements

for a major program segment

and they become irrelevant

at the module level. How,

then can we obtain some

assurance that the

requirements can be met as

the program is being

developed?.

We will describe a

methodology for gaining

insights into potential

reliability problems during

the early program

development by use of

artifacts generated by UML

tools
5
. The approach, but not the tool that we developed, can also be used in non-UML

environments. As an example we use the software for autonomously switching from an active

component to a back-up (standby) component in case of failure of the active one. Such programs

are frequently used in satellite systems, communication networks and process control. Figure 1

shows a use case diagram
6
 for a plant control system where the two systems manage their roles

autonomously, primarily with the aid of exchanges of heartbeat (HB) data. The use case diagram

is normally the first formal document created for program development.

In the diagram the stick figures are called actors but they are not necessarily persons. In

our example the environment and the partner (the corresponding computer program running on

the partner system) are certainly not persons, and the plant control may or may not be one. The

ovals are the specified methods and these become the elements for which failure modes are

analyzed. The directed lines or arcs denote information flow and hence the paths through which

failure effects propagate.

The following discussion concentrates on the Receive HB method (the heavy framed oval).

The most common failure mode for this method is failure to report receipt of a heartbeat when in

fact it was sent by the partner. If this happens when own program is already in the active role the

only action is to log the failure for external analysis. If it happens when own program is in the

standby role it will transition to the active role and notify plant control. Again, this is a low

severity failure. But the Receive HB method may also have a failure mode in which it signals

receipt of heartbeats when the partner does not generate them. That failure mode may disable

the entire plant communication system in the following scenario: Partner fails while in active

mode. Own program does not note absence of heartbeats and does not take over. To determine

whether this failure mode is likely to happen we need to examine the details of the Receive HB
method, shown in Figure 2.

A valid heartbeat consists of three evenly spaced pulses over a defined interval. The

Counter method counts the pulses and when it receives three pulses sends a message to the

ENVIRONMENT

PARTNER

BECOME
STANDBY

PLANT CONTROL

ESTABLISH ROLE

BECOME
ACTIVE

GENERATE HBRECEIVE HB NEGATE

ESTABLISH LOSS
OF PARTNER

LOG

Figure 1. Active/ Standby Use Case Diagram

ICSE04 5

Signal Received method. If no

pulses are received it sends a

message to the HB Failure

method. The latter method waits

three HB cycles before initiating

actions appropriate to loss of

partner. Thus, the failure modes

that prevent recognition of a loss

of partner are (i) spurious

generation of exactly three pulses

per interval in Counter and (ii)

spurious transmission of defined

alternating symbols by HB

Failure. Both of these conditions

will have to exist for at least three

HB cycles to affect the actions at

the Active/Standby level.

When pulses are received

but their number is less than three

a message is sent to the Error

Reporter method. The first time

this condition is encountered the Error Reporter sends a message to the Signal Received method

and normal processing continues. If the counter continues to report one or two pulses, an error

report is sent to an exception handler (shown as part of plant control) that has visibility of plant

performance. If the performance is normal, the currently active module remains in control and

the counter method in the standby controller is diagnosed as possibly defective. If there is any

indication that the plant performance deviates from normal the standby module is commanded to

become active.

An FMEA worksheet for the Receive HB method based on Figure 2 is shown in Table 1.

The level of detail is comparable to a parts approach for hardware portions of the system but no

failure probability is listed. The entries in the severity column range from II (loss of service) to

IV (minor). Severity I is usually reserved for failure effects that can lead to fatalities. No entry in

the last column means that the service is not affected.

The worksheet reveals both strengths and weaknesses of the Receive HB method. The

important strength shown is that severity II failure effects will occur only under highly unlikely

circumstances: spurious count of exactly 3, and spurious generation of a defined alternating

sequence. A weakness is that internal fault detection (self-test) can detect only failure to furnish

output. The method depends primarily on external detection (Plant Control) to recognize

spurious outputs. But because the likelihood of these events occurring at all is very small

(specific conditions have to be met to constitute an acceptable message) the dependence on

external detection may be acceptable in most circumstances.

INTERVAL

GENERATOR

 COUNTER SIGNAL
RECEIVED

CLOCK TICKS

CONTINUE

RESTART

COUNT = 3

COUNT = 0
ERROR

REPORTER

ENVIRONMENT

PARTNER

0<COUNT<3

HB FAILURE

ALTERNATING

SYMBOLS = OK

TO

ESTABLISH LOSS

OF PARTNER

PLANT
CONTROL

Figure 2 Receive HB Use Case Diagram

ICSE04 6

Table 1. FMEA for Figure 2

ID Item/Function Failure Mode & Causes Local Fail.

Effect
Failure

Detection
Compen-

sation
Seve-

rity
1.1.1.1 Interval Generator No interval started. Loss of

clock ticks or internal failure

HB failure Self-Test Note 1 IV

1.1.1.2 Interval Generator Long interval. Missing clock

ticks or internal failure.

HB failure External Note 1 IV

1.1.2.1 Counter No count. External or internal

failure

HB failure Self-Test Note 1 IV

1.1.2.2 Counter Spurious count exactly = 3.

Internal failure

HB failure External Note 2 II

1.1.2.3 Counter Spurious count 1 or 2.

Internal failure

Spurious

HB

Error

Reporter

Note 3 IV

1.1.3.1 HB Failure Does not send Restart. Internal

Failure

None Self-Test Note 4

1.1.3.2 HB Failure Spurious Restart. Internal

Failure

HB Failure External Note 1 IV

1.1.3.3 HB Failure No or random output to Loss

of Partner. Internal failure

HB Failure External Note 1 IV

1.1.3.4 HB Failure Spurious defined alternating

signals

Spurious

HB

External Note 1 II

1.1.4.1 Signal Received No Continue output. External

or internal failure.

HB Failure Self-Test Note 1 IV

1.1.4.2 Signal Received Spurious Continue output.

Error in input processing

None External Counter

1.1.5.1 Error Reporter No output to Signal Received.

External or internal failure.

HB Failure Self-Test Notes 1, 5 IV

1.1.5.2 Error Reporter No output to Plant Control.

External or internal failure

None External Note 5

1.1.5.3 Error Reporter Spurious output(s). Internal

failure

None Note 6

Note 1: Temporary failure effects are suppressed because the Loss of Partner method waits for three intervals to activate.

Note 2: No effect if active or if partner active and operational. Otherwise Severity II

Note 3: No effect if single occurrence.

Note 4: Will cause no effect when count >0.

Note 5: Will produce any effect only under the extremely unlikely condition of count=1 or 2 and another significant failure.

Note 6: Spurious outputs will be detected by Signal Received and Plant Control, respectively.

Let us analyze whether the current implementation for spurious heartbeats (ID 1.1.2.2)

meets the first of the bulleted requirements at the beginning of this section - not more than one

system-wide loss of service a year. We assume that a component failure that causes cessation of

heartbeats occurs once a month and that it is repaired in one hour. The component unavailability

is therefore 1/720 = 0.0014. One half of these failures will occur in the active component where

spurious heartbeats do not cause a failure effect. Thus, the fraction of vulnerability is 0.0007.

Several hypothetical levels of probability of undetected spurious heartbeats and the

corresponding annual loss of service probability are shown in Table 2. The Receive HB method

may not be the only one that can cause loss of service, but even if there are several dozen of

equally contributory methods the risk of violating the loss of service requirement is acceptably

low. We have reached this conclusion without quantifying software reliability at the module,

method, or line of code level. The component failure probability (used in the fraction of

vulnerability calculation) is governed by hardware reliability and thus it can be expected that

quantitative data will be available.

During the pre-implementation phase the primary purpose of software reliability

assessment is to establish the general feasibility of a design and to identify areas where

ICSE04 7

improvement may be necessary, such as the detection of some failure modes in our example.

Once code becomes available the emphasis shifts to identification of all methods that can give

rise to high severity failures and thorough exploration of these by review and test. A

methodology for this is outlined in the following section.

Table 2. Probability of Loss of Service

(Calculated for 8600 hours of service)

Probability of

Spurious Heartbeats

Probability of

Loss of Service

0.01 0.06

0.001 0.006

0.0001 0.0006

4. Software Reliability during Testing
We organize the reliability assessment during the implementation phase with the aid of

an expanded FMEA worksheet that is adapted from the former hardware-oriented MIL-STD-

1629
7
. An example of this worksheet together with the UML artifacts that supply the pertinent

software information is shown in Figure 3. Note the absence of a failure rate or probability

column. Although such data are customarily provided in hardware FMEA worksheets they were

not required in the standard, where only order-of-magnitude failure probabilities were used in

criticality assessment. Our approach adapts this guidance to software.

Figure 3. Example of FMEA Generation

The identification number (ID) for failure modes is usually a hierarchical construct of

type aa.bb.cc.dd where aa is the index of a major software component (e. g., configuration item),

ICSE04 8

and the other indices refer to successively lower indent levels. There is no limit to the level of

indentation that can be used. Once the lowest level is reached, usually a method in UML

nomenclature, the failure modes can be identified by letters that have mnemonic significance (e.

g., s for stop, i for incorrect result) or by numeric suffixes.

The component name is obtained from the UML class chart as shown at the top of the

page, and the ID will be automatically assigned based on the indenture levels of the listing. The

extraction of the component name from the listing is a very significant step, and the one that

permits a claim of objectivity and completeness for this technique. The UML class chart can be

considered equivalent to the parts listing in a bill of materials for hardware FMEA.

Failure modes are assigned in a computer-aided rather than fully automated manner but

automation may become possible in a given programming environment as experience is gained.

Details of the failure modes assignment and of the association of failure effects with a given

failure mode are discussed later. The severity is directly associated with system level effects and

can be assigned automatically in a given project context.

 Figure 3 shows a worksheet for only a single operational mode whereas most

practical systems have multiple modes or phases that can result in significantly different failure

effects. An example is a spacecraft that has test, launch and on-orbit modes. Failure modes of the

guidance software that have very severe effects in the launch mode have only marginal effects in

the other two modes. Another column can be added to the FMEA worksheet to denote the

operational phase or mode for which failure effects are evaluated.

In 2002 Haapanen and Helminen
8
 published a survey of the literature on software FMEA.

It listed over 20 different failure modes, including hang, stop, missing data, incorrect data and

wrong timing of data. Many of the distinctions are not necessary when the emphasis is on

evaluation of failure effects and identifying the areas of greatest risk.

All program classes and methods have the potential of causing a crash, cessation of

processing with possible impairment of computer resources, and a stop, cessation of processing

without impairment of computer resources and usually with a diagnostic on the location of the

stop. Individual methods that output data have a further failure mode of faulty message. For other

cases failure to initialize and failure to release memory may also have to be considered. To

handle conditions that do not fit these predefined failure modes our taxonomy lets the user define

other failure modes. When a new program method is accessed by the analyst, the basic failure

modes are automatically entered for it and others can be added by the analyst.

Responsible software developers recognize the possibility of critical failure modes and

protect against them by assertions, checksums and in-line tests. It is thus only necessary to

postulate typical failure modes to check for the presence of defensive programming constructs,

the key to our reliability assessment. The FMEA worksheet recognizes two aspects of defensive

programming: detection and compensation (recovery). Detection by itself can at least convert a

crash into a stop (where environment data can be furnished for diagnosis). But compensation in

the form of re-try, restart, assignment of default values, or invocation of alternate routines can

provide a much higher degree of protection. Table 3 shows how the translation of lower level

failures is affected by protection at the higher level (or at the output of the lower level). The

capture of fault detection and compensation provisions for entry into the FMEA is made possible

by the “tag” construct of UML.

ICSE04 9

Table 3. Translation of Lower Level Effects

Lower Level Effect Higher
Level

Protection Crash Stop Delayed
Output

Degraded
Output

None Crash Crash Crash Degraded
output

Detection
only

Crash Stop Stop Degraded
output

Detection
and re-try

Crash Stop Delayed
output

Degraded
output

Detection
and default
value

Degraded
output

Degraded
output

Degraded
output

Degraded
output

Alternate
method

None None None None

Earlier in this paper we discussed the difficulty of evaluating the reliability of low level

software segments, and probably few practitioners needed our exposition of this issue. The

visibility into protection and compensation provisions afforded by the FMEA, and the effect of

these on operation at the higher level shown in Table 3 permits us to base the reliability

assessment primarily on the presence and nature of the protection.

This also has important implications on the formulation of test plans. Of course all

functional requirements need to be tested, but testing for reliability should concentrate on the

verification of the protective provisions. Because the protective measures are largely similar, if

not identical, within broad classes of programs, the generation of test cases can be automated or

at least greatly simplified. The essential questions for reliability assessment thus become

• Are methods and higher level constructs that can cause high severity failures covered by

detection and compensation provisions?

• Has the effectiveness of these provisions been proven by test?

If the answers to these questions are in the affirmative the need for a numerical estimate

of the software failure rate may be much less urgent but there is still the problem of being

consistent with the hardware practice when a system level FMEA is to be generated. We suggest

that the software reliability assessment described here may in many instances also be applicable

to hardware, and that a system reliability assessment format may evolve in this direction. The

bottom-up calculation of failure probability was historically convenient and could be automated.

But it has long been recognized that system failures can arise from causes other than parts

failures, and thus alternatives to the parts failure rate summation may be desirable for reasons

other than consistency with software practice.

The preceding discussion has exclusively dealt with UML based software development

but the general principles can also be applied where UML tools are not used. The benefit of the

automation will of course be lost.

5. Conclusions and Recommendations

 The concept of software failure rate that is the basis of most software reliability models is

appropriate for programs running on a fixed population of computers and in a stable computer

ICSE04 10

usage environment. In a distributed computing environment, and particularly when new users are

constantly being added, the number of failures per unit time is affected by events (e. g., number

of times a given segment is accessed) that are not properties of the software. Therefore the

number of failures per time interval does not translate directly into a measure of software

reliability.

Given this problem in measuring software failure probability, it becomes very difficult to

formulate a meaningful failure probability prediction during program development. Instead we

assess reliability of software segments in terms of the severity of system level effects of their

failure modes and the extent of the protection (fault detection and recovery) that is built into the

program. Where the protection provisions cover all failure modes that can cause high severity

failures, and where the effectiveness of the provisions has been established by test, the program

may be considered reliable even in the absence of a quantitative failure probability assessment.

We recommend that the application of the FMEA procedures described above, and

focusing of V&V activities on coverage and effectiveness of protective measures, be pursued as

a means of reducing the cost of software development for applications requiring high reliability.

References

1
 Jelinski, Z., and P. B. Moranda, “Software Reliability Research” in Statistical Computer Performance Evaluation,

W. Freiberger, ed., pp. 465 – 484, Academic Press, New York, 1972
2
 Shooman, M. L., “Probabilistic Models for Software Reliability Prediction” in Statistical Computer Performance

Evaluation, W. Freiberger, ed., pp. 485 - 502, Academic Press, New York, 1972
3
 Musa, J. D., “A Theory of Software Reliability and its Application”, IEEE Transactions on Software Engineering,

SE-1 (3), pp.312-327, 1975
4
 ANSI.AIAA R-013-1992, American National Standard, Recommended Practice for Software Reliability, AIAA,

Washington DC, 1993
5
 Boggs, Wendy and Michael, Mastering UML with Rational Rose, Sybex, 2002

6
 Rosenberg, D., Use Case Driven Object Modeling with UML, Addison-Wesley, 1999

7
 Department of Defense, “Procedures for Performing a Failure Modes, Effects and Criticality Analysis”, AMSC

N3074, 24 Nov 1980 (the standard is no longer active but is still widely used)
8 Haapanen Pentti and Atte Helminen, “Failure Mode and Effects Analysis of Software-Based Automation

Systems”, STUK-YTO-TR 190, August 2002

