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Abstract 

 
 Software failure rate, long a primary reliability measure, is difficult to apply in a 

distributed computing environment with an uncontrolled number of active nodes and usage 

patterns. Since it is not useful as a measure, it is also not a good prediction tool during software 

development. Instead we assess reliability of software segments in terms of the severity of 

system level effects of their failure modes and the extent of the protection (fault detection and 

recovery) that is built into the program. Where the protection provisions cover all failure modes 

that can cause high severity failures, and where the effectiveness of the provisions has been 

established by test, the program may be considered reliable even in the absence of a quantitative 

failure rate assessment. 

We describe UML based FMEA procedures as a means of focusing of V&V activities on 

coverage and effectiveness of protective measures, and recommend pursuit of these procedures 

as a means of reducing the cost of high reliability software. 
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1. Introduction 
We were successful in developing a computer-aided procedure for software FMEA 

except for the issue of software failure probability. Strictly speaking, failure probability is 

required for criticality analysis rather than FMEA in the narrower sense, but most hardware 

FMEA tools provide a column in the FMEA worksheet in which the part or assembly failure 

probability for a given mission phase is entered. To generate a system FMEA that includes 

hardware and software we need an expression for software failure probability for small code 

segments (equivalent to hardware parts). We decided to leave that task to some future geniuses 

and to focus on an alternative assessment of software reliability. 

Our approach avoids two problems: (1) in a typical distributed computing environment 

the number of failures per time interval is much more determined by usage factors than by 

software reliability, making it necessary to find new approaches to the measurement of software 

reliability; and (2) software reliability cannot be predicted bottom-up in the way in which 

hardware reliability can be predicted from established parts failure rates. 

Of course there are circumstances software and hardware failures can be subjected to the 

same statistical treatment as will be discussed in the next section. Also, it is recognized that the 

development and application environments affect failure probability but that does not help in 

estimating the failure probability of a given small code segment in the same sense as a schematic 

permits us to estimate the failure probability of a small electronic assembly. This dilemma is 

treated in Section 3 where we are concerned with reliability evaluation prior to coding. Once 

code is available for testing we should be in a better position to assess reliability, and the steps 

necessary for realizing this are discussed in Section 4. Conclusions and recommendations are 

presented in the final section of this paper. 
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2. Same Measure – Different Meaning 
Some of the earliest quantitative work on software reliability concerned the decreasing 

failure rate during test
1, 2

. These models were soon followed by others, the most widely used one 

of which was that proposed by Musa
3
. All of these models shared the following assumptions: 

• A large program being tested in a fixed computer environment 

• Tests were being conducted by the developer 

• Errors found during test were immediately corrected (or if they caused additional failures 

these were ignored) 

The models differed from each other in addressing discrete (time to next failure) or 

continuous (failure rate) measures and in the failure reduction mechanism that was postulated. 

Since then several other software reliability growth models have been proposed that differ from 

those mentioned here primarily in the mathematical expression for the failure reduction process. 

The AIAA Recommended Practice for Software Reliability
4
 lists these models as well as tools 

that facilitate their implementation. 

A factor that contributed to the wide acceptance of the Musa model was the emphasis on 

execution time as the denominator of the failure rate expression. Other models had allowed 

calendar time or equivalent intervals to be used, and that had led to inconsistent results except 

where a very closely regulated test schedule was used (the same number of hours in each 

calendar period). 

Quite another interpretation of software failure rate is encountered when software is in 

operation, say in a data processing center, where management is concerned about uninterrupted 

service. The following hypothetical failure statistics illustrate this issue. 

 

Table 1.  Data Center Monthly Failures 

 

Month Hardware Software 

January 18 11 

February 14 12 

March 18 14 

April 15 16 

May 12 20 

June 11 24 

July 13 23 

 

The data center manager, Mike, is convinced that he is faced with a major software 

reliability problem. He calls a meeting where the software development supervisor, Sam, claims 

that the number of failures attributed to software has nothing to do with software reliability but is 

merely a reflection of the work environment. To support his position Sam produces the data 

shown in Table 2 and explains 

• Corrective change requests, an indication of software faults encountered, and an index of 

reliability, have sharply decreased over the seven month period 

• Total software change requests have gone up, increasing the workload of the department 

and causing slower response to corrective change requests; this increases the time that a fault 

remains in the operational software and the opportunity for it to cause failures 



ICSE04 3 

• The increasing number of adaptive and perfective change requests indicates that the 

program is being used much more often and thus a larger number of failures can be expected due 

a single fault. 

 

Table 2. Monthly Software Change Request Summary 

 

Month Total Corrective Adaptive Perfective 

January 9 8 1 0 

February 10 8 2 0 

March 10 7 2 1 

April 11 5 3 3 

May 12 6 2 4 

June 14 5 3 6 

July 13 4 5 4 

 

We don’t want to adjudicate the conflict between Mike and Sam, but we can understand 

their positions. Is there any denying that the monthly number of software failures has roughly 

doubled since the beginning of the year? And isn’t it true that the number of new faults found per 

month has been cut in half? The most striking observation is that the concept of software failure 

rate that is central to all the models mentioned in the beginning of this section is not easily 

applied in an environment where  

• The program is running on multiple computers with no control on execution time 

• Inputs represent random user requests 

• Operation cannot be interrupted to diagnose failures and correct  newly found faults 

We should also ask the data center manager whether the number of failures is really the 

significant operating index. Perhaps the time lost due to the failures, or the effect of failures on 

the operation of the enterprise may be of more importance, and if they are, what software 

engineering measures are suitable? 

This example has shown how difficult it is to obtain a meaningful measure of software 

reliability even in an environment where data are freely available. We now turn to the problem of 

predicting software reliability, first during the early stages of development and then after code is 

available for testing.  

 

3. Software Reliability before Implementation 
 

When the need for a new program arises in an environment where avoidance of failure is a 

top concern it is usual to formulate requirements for reliability based on the experience with 

predecessor systems. Typical expressions from different environments are 

• Not more than one system-wide loss of service a year 

• Availability of core services of at least 0.9999999 (0.97) 

• Restoration time not to exceed 10 minutes 



ICSE04 4 

All of these expressions 

are meaningful at the system 

level and may affect the top 

level program design but 

they are very difficult to 

translate into requirements 

for a major program segment 

and they become irrelevant 

at the module level. How, 

then can we obtain some 

assurance that the 

requirements can be met as 

the program is being 

developed?. 

We will describe a 

methodology for gaining 

insights into potential 

reliability problems during 

the early program 

development by use of 

artifacts generated by UML 

tools
5
. The approach, but not the tool that we developed, can also be used in non-UML 

environments. As an example we use the software for autonomously switching from an active 

component to a back-up (standby) component in case of failure of the active one. Such programs 

are frequently used in satellite systems, communication networks and process control. Figure 1 

shows a use case diagram
6
 for a plant control system where the two systems manage their roles 

autonomously, primarily with the aid of exchanges of heartbeat (HB) data. The use case diagram 

is normally the first formal document created for program development. 

In the diagram the stick figures are called actors but they are not necessarily persons. In 

our example the environment and the partner (the corresponding computer program running on 

the partner system) are certainly not persons, and the plant control may or may not be one. The 

ovals are the specified methods and these become the elements for which failure modes are 

analyzed. The directed lines or arcs denote information flow and hence the paths through which 

failure effects propagate. 

The following discussion concentrates on the Receive HB method (the heavy framed oval). 

The most common failure mode for this method is failure to report receipt of a heartbeat when in 

fact it was sent by the partner. If this happens when own program is already in the active role the 

only action is to log the failure for external analysis. If it happens when own program is in the 

standby role it will transition to the active role and notify plant control. Again, this is a low 

severity failure. But the Receive HB method may also have a failure mode in which it signals 

receipt of heartbeats when the partner does not generate them.  That failure mode may disable 

the entire plant communication system in the following scenario: Partner fails while in active 

mode. Own program does not note absence of heartbeats and does not take over. To determine 

whether this failure mode is likely to happen we need to examine the details of the Receive HB 
method, shown in Figure 2.  

A valid heartbeat consists of three evenly spaced pulses over a defined interval. The 

Counter method counts the pulses and when it receives three pulses sends a message to the  
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Figure 1. Active/ Standby Use Case Diagram 
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Signal Received method. If no 

pulses are received it sends a 

message to the HB Failure 

method. The latter method waits 

three HB cycles before initiating 

actions appropriate to loss of 

partner.  Thus, the failure modes 

that prevent recognition of a loss 

of partner are (i) spurious 

generation of exactly three pulses 

per interval in Counter and (ii) 

spurious transmission of defined 

alternating symbols by HB 

Failure. Both of these conditions 

will have to exist for at least three 

HB cycles to affect the actions at 

the Active/Standby level.  

When pulses are received 

but their number is less than three 

a message is sent to the Error 

Reporter method. The first time 

this condition is encountered the Error Reporter sends a message to the Signal Received method 

and normal processing continues. If the counter continues to report one or two pulses, an error 

report is sent to an exception handler (shown as part of plant control) that has visibility of plant 

performance. If the performance is normal, the currently active module remains in control and 

the counter method in the standby controller is diagnosed as possibly defective.  If there is any 

indication that the plant performance deviates from normal the standby module is commanded to 

become active. 

An FMEA worksheet for the Receive HB method based on Figure 2 is shown in Table 1.  

The level of detail is comparable to a parts approach for hardware portions of the system but no 

failure probability is listed. The entries in the severity column range from II (loss of service) to 

IV (minor). Severity I is usually reserved for failure effects that can lead to fatalities. No entry in 

the last column means that the service is not affected. 

The worksheet reveals both strengths and weaknesses of the Receive HB method.  The 

important strength shown is that severity II failure effects will occur only under highly unlikely 

circumstances: spurious count of exactly 3, and spurious generation of a defined alternating 

sequence. A weakness is that internal fault detection (self-test) can detect only failure to furnish 

output. The method depends primarily on external detection (Plant Control) to recognize 

spurious outputs. But because the likelihood of these events occurring at all is very small 

(specific conditions have to be met to constitute an acceptable message) the dependence on 

external detection may be acceptable in most circumstances. 
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Figure 2 Receive HB  Use Case Diagram 
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Table 1. FMEA for Figure 2 

 
ID Item/Function Failure Mode & Causes Local Fail. 

Effect 
Failure 

Detection 
Compen-

sation 
Seve-

rity 
1.1.1.1 Interval Generator No interval started. Loss of 

clock ticks or internal failure 

HB failure Self-Test Note 1 IV 

1.1.1.2 Interval Generator Long interval. Missing clock 

ticks or internal failure. 

HB failure External Note 1 IV 

1.1.2.1 Counter No count. External or internal 

failure 

HB failure Self-Test Note 1 IV 

1.1.2.2 Counter Spurious count exactly = 3. 

Internal failure 

HB failure External Note 2 II 

1.1.2.3 Counter Spurious count 1 or 2.  

Internal failure 

Spurious 

HB 

Error 

Reporter 

Note 3 IV 

1.1.3.1 HB Failure Does not send Restart. Internal 

Failure 

None Self-Test Note 4  

1.1.3.2 HB Failure Spurious Restart. Internal 

Failure 

HB Failure External Note 1 IV 

1.1.3.3 HB Failure No or random output to Loss 

of Partner. Internal failure 

HB Failure External Note 1 IV 

1.1.3.4 HB Failure Spurious defined alternating 

signals 

Spurious 

HB 

External Note 1 II 

1.1.4.1 Signal Received No Continue output. External 

or internal failure. 

HB Failure Self-Test Note 1 IV 

1.1.4.2 Signal Received Spurious Continue output. 

Error in input processing 

None External Counter  

1.1.5.1 Error Reporter No output to Signal Received. 

External or internal failure. 

HB Failure Self-Test Notes 1, 5 IV 

1.1.5.2 Error Reporter No output to Plant Control. 

External or internal failure 

None External Note 5  

1.1.5.3 Error Reporter Spurious output(s). Internal 

failure 

None Note 6   

Note 1:  Temporary failure effects are suppressed because the Loss of Partner method waits for three intervals to activate. 

Note 2:  No effect if active or if partner active and operational. Otherwise Severity II  

Note 3:  No effect if single occurrence. 

Note 4:  Will cause no effect when count >0. 

Note 5:  Will produce any effect only under the extremely unlikely condition of count=1 or 2 and another significant failure. 

Note 6:  Spurious outputs will be detected by Signal Received and Plant Control, respectively. 

 

Let us analyze whether the current implementation for spurious heartbeats (ID 1.1.2.2) 

meets the first of the bulleted requirements at the beginning of this section - not more than one 

system-wide loss of service a year. We assume that a component failure that causes cessation of 

heartbeats occurs once a month and that it is repaired in one hour. The component unavailability 

is therefore 1/720 = 0.0014. One half of these failures will occur in the active component where 

spurious heartbeats do not cause a failure effect. Thus, the fraction of vulnerability is 0.0007. 

Several hypothetical levels of probability of undetected spurious heartbeats and the 

corresponding annual loss of service probability are shown in Table 2. The Receive HB method 

may not be the only one that can cause loss of service, but even if there are several dozen of 

equally contributory methods the risk of violating the loss of service requirement is acceptably 

low. We have reached this conclusion without quantifying software reliability at the module, 

method, or line of code level. The component failure probability (used in the fraction of 

vulnerability calculation) is governed by hardware reliability and thus it can be expected that 

quantitative data will be available. 

During the pre-implementation phase the primary purpose of software reliability 

assessment is to establish the general feasibility of a design and to identify areas where 
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improvement may be necessary, such as the detection of some failure modes in our example. 

Once code becomes available the emphasis shifts to identification of all methods that can give 

rise to high severity failures and thorough exploration of these by review and test. A 

methodology for this is outlined in the following section. 

 

Table 2. Probability of Loss of Service 

(Calculated for 8600 hours of service) 

 

Probability of 

Spurious Heartbeats 

Probability of 

Loss of Service 

0.01 0.06 

0.001 0.006 

0.0001 0.0006 

 

4. Software Reliability during Testing 
We organize the reliability assessment during the implementation phase with the aid of 

an expanded FMEA worksheet that is adapted from the former hardware-oriented MIL-STD-

1629
7
. An example of this worksheet together with the UML artifacts that supply the pertinent 

software information is shown in Figure 3. Note the absence of a failure rate or probability 

column. Although such data are customarily provided in hardware FMEA worksheets they were 

not required in the standard, where only order-of-magnitude failure probabilities were used in 

criticality assessment. Our approach adapts this guidance to software. 

 

Figure 3.  Example of FMEA Generation 

 

The identification number (ID) for failure modes is usually a hierarchical construct of 

type aa.bb.cc.dd where aa is the index of a major software component (e. g., configuration item), 
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and the other indices refer to successively lower indent levels. There is no limit to the level of 

indentation that can be used. Once the lowest level is reached, usually a method in UML 

nomenclature, the failure modes can be identified by letters that have mnemonic significance (e. 

g., s for stop, i for incorrect result) or by numeric suffixes.  

The component name is obtained from the UML class chart as shown at the top of the 

page, and the ID will be automatically assigned based on the indenture levels of the listing. The 

extraction of the component name from the listing is a very significant step, and the one that 

permits a claim of objectivity and completeness for this technique. The UML class chart can be 

considered equivalent to the parts listing in a bill of materials for hardware FMEA.  

Failure modes are assigned in a computer-aided rather than fully automated manner but 

automation may become possible in a given programming environment as experience is gained. 

Details of the failure modes assignment and of the association of failure effects with a given 

failure mode are discussed later. The severity is directly associated with system level effects and 

can be assigned automatically in a given project context. 

 Figure 3 shows a worksheet for only a single operational mode whereas most 

practical systems have multiple modes or phases that can result in significantly different failure 

effects. An example is a spacecraft that has test, launch and on-orbit modes. Failure modes of the 

guidance software that have very severe effects in the launch mode have only marginal effects in 

the other two modes. Another column can be added to the FMEA worksheet to denote the 

operational phase or mode for which failure effects are evaluated.  

In 2002 Haapanen and Helminen
8
 published a survey of the literature on software FMEA. 

It listed over 20 different failure modes, including hang, stop, missing data, incorrect data and 

wrong timing of data.  Many of the distinctions are not necessary when the emphasis is on 

evaluation of failure effects and identifying the areas of greatest risk. 

All program classes and methods have the potential of causing a crash, cessation of 

processing with possible impairment of computer resources, and a stop, cessation of processing 

without impairment of computer resources and usually with a diagnostic on the location of the 

stop. Individual methods that output data have a further failure mode of faulty message. For other 

cases failure to initialize and failure to release memory may also have to be considered. To 

handle conditions that do not fit these predefined failure modes our taxonomy lets the user define 

other failure modes. When a new program method is accessed by the analyst, the basic failure 

modes are automatically entered for it and others can be added by the analyst. 

Responsible software developers recognize the possibility of critical failure modes and 

protect against them by assertions, checksums and in-line tests.  It is thus only necessary to 

postulate typical failure modes to check for the presence of defensive programming constructs, 

the key to our reliability assessment. The FMEA worksheet recognizes two aspects of defensive 

programming: detection and compensation (recovery). Detection by itself can at least convert a 

crash into a stop (where environment data can be furnished for diagnosis). But compensation in 

the form of re-try, restart, assignment of default values, or invocation of alternate routines can 

provide a much higher degree of protection. Table 3 shows how the translation of lower level 

failures is affected by protection at the higher level (or at the output of the lower level). The 

capture of fault detection and compensation provisions for entry into the FMEA is made possible 

by the “tag” construct of UML. 
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Table 3. Translation of Lower Level Effects 
 

Lower Level Effect Higher 
Level 

Protection Crash Stop Delayed 
Output 

Degraded 
Output 

None Crash Crash Crash Degraded 
output 

Detection 
only 

Crash Stop Stop Degraded 
output 

Detection 
and re-try 

Crash Stop Delayed 
output 

Degraded 
output 

Detection 
and default 
value 

Degraded 
output 

Degraded 
output 

Degraded 
output 

Degraded 
output 

Alternate 
method 

None None None None 

 

Earlier in this paper we discussed the difficulty of evaluating the reliability of low level 

software segments, and probably few practitioners needed our exposition of this issue. The 

visibility into protection and compensation provisions afforded by the FMEA, and the effect of 

these on operation at the higher level shown in Table 3 permits us to base the reliability 

assessment primarily on the presence and nature of the protection. 

This also has important implications on the formulation of test plans. Of course all 

functional requirements need to be tested, but testing for reliability should concentrate on the 

verification of the protective provisions. Because the protective measures are largely similar, if 

not identical, within broad classes of programs, the generation of test cases can be automated or 

at least greatly simplified. The essential questions for reliability assessment thus become 

• Are methods and higher level constructs that can cause high severity failures covered by 

detection and compensation provisions? 

• Has the effectiveness of these provisions been proven by test?  

If the answers to these questions are in the affirmative the need for a numerical estimate 

of the software failure rate may be much less urgent but there is still the problem of being 

consistent with the hardware practice when a system level FMEA is to be generated. We suggest 

that the software reliability assessment described here may in many instances also be applicable 

to hardware, and that a system reliability assessment format may evolve in this direction. The 

bottom-up calculation of failure probability was historically convenient and could be automated. 

But it has long been recognized that system failures can arise from causes other than parts 

failures, and thus alternatives to the parts failure rate summation may be desirable for reasons 

other than consistency with software practice. 

The preceding discussion has exclusively dealt with UML based software development 

but the general principles can also be applied where UML tools are not used. The benefit of the 

automation will of course be lost. 

5. Conclusions and Recommendations 
 

 The concept of software failure rate that is the basis of most software reliability models is 

appropriate for programs running on a fixed population of computers and in a stable computer 
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usage environment. In a distributed computing environment, and particularly when new users are 

constantly being added, the number of failures per unit time is affected by events (e. g., number 

of times a given segment is accessed) that are not properties of the software. Therefore the 

number of failures per time interval does not translate directly into a measure of software 

reliability. 

Given this problem in measuring software failure probability, it becomes very difficult to 

formulate a meaningful failure probability prediction during program development. Instead we 

assess reliability of software segments in terms of the severity of system level effects of their 

failure modes and the extent of the protection (fault detection and recovery) that is built into the 

program. Where the protection provisions cover all failure modes that can cause high severity 

failures, and where the effectiveness of the provisions has been established by test, the program 

may be considered reliable even in the absence of a quantitative failure probability assessment. 

We recommend that the application of the FMEA procedures described above, and 

focusing of V&V activities on coverage and effectiveness of protective measures, be pursued as 

a means of reducing the cost of software development for applications requiring high reliability. 
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