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ABSTRACT 

We describe a method and tool (MOCET: Model based 
Certification Tool) that generate computer-aided 
software FMEA. The method and tool are used in 
verification and certification of avionics programs and 
have great benefits also in the design phase offering a 
safer, more complete design while reducing the costs of 
late stage discovery of safety issues. The use of a FMEA 
tool at the early stage of design simplifies and optimizes 
the implementation of Defense-in-Depth, a technique of 
multiple layers of protection to prevent and mitigate 
failures and accidents. MOCET’s ability to aggregate all 
failure modes that produce a given high level effect 
provides an ideal vehicle for optimizing placement of 
broad spectrum recovery mechanisms during the design 
stage.  
 

INTRODUCTION 

In previous work we have discussed the application of 
the MOCET software FMEA generator in verification and 
certification of avionics systems [1]. The current paper 
shows how an extension of these capabilities can also 
be put to use in the design phase to produce a robust 
and certifiable design by:    

                                                        
• Identifying potential failure modes that can produce 
safety or mission critical failure effects 
• Inserting effective detection provisions 
• Recommending suitable means for protecting 
against the effects of the detected failures 
 
The methodology described here is based on the use of 
MATLAB/Simulink or a similar model-based design tool 
that provides primitives with predictable failure modes 
[2]. MOCET combines an intelligent parser of model 
files, with sets of libraries that cover failure modes, local 
and end effects and detection and mitigation methods. 
The parser automatically translates a design model into 
a “part list” tree (similar to a hardware Bill Of Materials). 
The part list includes the hierarchical structure of the 
model (how parts associate into subsystems and 

systems). Once the hierarchical structure and part 
identification are generated the tool can automatically 
associate failures with each part. Based on the 
hierarchical structure generated by the parser, the tool 
can automatically identify local effects, and propagate 
these to the system level. In its use as an FMEA 
generator MOCET associates each failure mode with an 
end (system level) effect. When the severity level of this 
effect exceeds a user selected threshold, the added 
design tool features can recommend detection and 
mitigation measures to reduce the severity. The 
effectiveness of the tool is a function of the quality of the 
libraries. As an organizational tool, MOCET also 
performs as an organizational knowledge base, the 
libraries being a growing and living organism becoming 
more useful as the tool is used and new entries are 
saved in the failure, effects and mitigation/detection 
directories. The following section summarizes relevant 
features of MOCET as an FMEA generator. From this 
we then develop the extensions that make it into an 
effective tool for designing failure detection, 
circumvention and recovery techniques. Because design 
is not a completely deterministic activity, we find that the 
tool provides choices rather than prescribes a single 
provision. 

MOCET AS AN FMEA GENERATOR 

The purpose of an FMEA is to draw attention to failure 
modes that can cause catastrophic or mission impairing 
effects. These effects are usually identified by the 
system engineer on the basis of fault tree analysis and 
related techniques. For flight or engine control systems 
the most serious effects are typically loss of output, 
freezing of output, or un-commanded changes in output. 
By convention, these are designated as severity I 
effects. Somewhat less serious are low gain, sticky 
(lagging) output and restricted range of output; these 
increase the workload of the flight crew and may be 
designated as severity II. Lower severity failure modes 
include offsets from the desired attitude or flight path, 
drift in attitude or flight path, and limit cycling. Once 
these effects and the associated severities have been 
decided on, they are input as end effects data into 
MOCET. 



The main part of the analysis consists of (a) importing 
the model structure from the Simulink file, (b) selecting 
failure modes suitable for each element and associating 
failure effects with these, and (c) determining whether 
the design provides failure detection and mitigation 
measures. Details of these activities are presented in the 
following paragraphs with the longitudinal flight control 
system shown in Figure 1 serving as an example. When 
the analyst selects the file for this control system 
MOCET returns the screen shown in Figure 2. The 
element designation and identification numbers are 
automatically generated from the Simulink file by the 
MOCET parser. 

The listing is in function and format equivalent to a bill of 
materials (BOM) that is conventionally used as the 
starting point for hardware FMEA. This gives the 
MOCET generated FMEA a much greater claim to 
completeness than one that is generated from a 
functional partitioning of the software. The definition of 
functions is subjective; specifically, exception handling 
may not be separated from the primary function that it 
serves. Listing of failure modes according to designated 
function may miss failures associated with sub-roles 
such as exception handling. Since many software 
failures are due to faulty exception handling [8, 9] the 
suppression of it in the FMEA worksheets may lead to 
incomplete safety assessment. 

To further populate this screen the analyst selects a row 
and right clicks which causes a failure modes menu to 
drop down that is tailored to the specifics of the 
highlighted block. This is shown in Figure 3. The local 
failure effect is usually (but not always) uniquely 
associated with the failure mode. The analyst selects 
failure modes and effects that are applicable to the 
highlighted row. A local failure effect different from that 
shown on the screen can be substituted by editing.  

 

 
Figure 1. Longitudinal control system 

 

 
 
Figure 2  Initial MOCET screen for system of Figure 1 

Further right-clicking then causes another menu to drop 
down from which the end effect and severity are 
selected as shown in Figure 4. 

To protect against the highest severity failure effects the 
design should include failure detection and recovery 
(mitigation) provisions. To establish the existence of 
these the analyst (usually working with the system 
engineer) must review the design. The provisions that 
are applicable are then entered into another drop-down 
menu as shown in Figure 5. At present these actions are 
not automated but based on techniques similar to those 
described below in the Implementation section they will 
be automated in future versions of MOCET. 

SAE ARP4761 [7] defines the FMEA but does not 
mention specifically the application to software. 
However, the objectives for FMEA in that document are 
applicable to our discussion. It is of interest to show how  
ARP4761 may be used to guide the effort. The FMEA 
furnished by MOCET is decidedly of the piece-part type 
(App. G-3.2.2), with the Simulink blocks replacing 
hardware piece parts. There are minor deviations in 
format; e. g., MOCET provides no column for phase of 
operation since software is typically analyzed separately 
for each phase. Also, failure mitigation provisions 
(redundancy, error correcting code, etc.) are included in 
the MOCET worksheets but are not shown in the App. G 
worksheets. Software is heavily involved in the 
implementation of mitigation provisions and the analyst 
must be informed about them. As will be discussed later, 
MOCET can play an important part in identifying suitable 
mitigation provisions where they were not present in the 
original design.  MOCET records failure effects at 
several levels of the hierarchy (local, next higher and 
system level) and thus does not need the Failure Modes 



and Effects Summary (FMES) described in Appendix H 
of ARP4761. However, if the overall safety assessment 
process requires that an FMES be furnished, this can 
easily be generated from the data fields of the MOCET 
worksheets. 

 

INTERACTION OF DESIGN AND 
CERTIFICATION 

The preceding section showed the use of MOCET as an 
analysis tool in support of one of the milestones leading 
to certification. We now turn to the proactive use of the 
tool during design of equipment that is intended to be 
certified for compliance with AC 25.1309-1A [3]. The AC 
requires that the occurrence of malfunctions that can 
impede “…continued safe flight and landing” shall be 
extremely unlikely, defined as having a probability of 
occurrence of no more than 10-9 per flight-hour. Also, 
malfunctions that impose a significantly higher than 
normal workload on the pilot must be controlled to a 
probability of less than 10-5 per flight-hour.  Thus, an  
 

 
Figure 3 Failure Mode Selection path.  
 

 
Figure 4 Selecting end effects and severity 
 
important clue to the designer is a listing of where such 
malfunctions can arise. 
 
The use of an FMEA tool at the early stage of design 
reduces the cost of late staged discovery of safety 

issues and it simplifies the implementation of Defense-
in-Depth (multiple mitigation measures) as will be 
discussed later. The ability of MOCET to aggregate all 
failure modes that produce a given high level effect 
provides an ideal vehicle for optimizing placement of 
broad spectrum recovery mechanisms during the design 
stage. As an example, where a failure in the processing 
of an adaptive elevator command loop in a flight control 
system can cause extreme surface deflections (system 
effect: structural damage or loss of aircraft) it is possible 
to design a non-adaptive controller to take over when 
extreme surface deflections are commanded. However, 
extreme surface deflections can also be caused by other 
failures for which substitution of the non-adaptive 
controller would not help with recovery. A broader 
spectrum recovery mechanism will therefore be more 
economical and reliable (each added recovery path 
needs to be analyzed and tested).  
 
As an added safety provision (or in some cases as an 
alternate) MOCET can be tasked to list all failures that  
 
 

 
 
result in a high rate of attitude change.  Where the high 
attitude rate is caused by a software problem, an 
effective mitigation is switching to an alternate program; 
but again, a high rate of attitude change may result from 
some failures outside of the elevator command loop, and 
recovery provisions for these failures can therefore be 
combined with (or substituted) for those described 
above.  
 
Less catastrophic failures may result in slow attitude 
changes that may not be detected at that level but that 
will result in a detectable deviation from the desired 
flight. Thus, additional broad coverage failure protection 
may be provided at the flight path level. Broad detection 
coverage is not desirable in many cases because it does 
not point to a specific cause, leads to later detection than 
specific provisions, and because of this permits 
proliferations of faulty data that may persist even after 



corrective measures for the original failure have been 
completed. Therefore when a MOCET listing indicates 
that a failure is detectable at a high hierarchical level it 
does not necessarily mean that lower level failure 
detection can be deferred. Engineering judgment is still 
required to select appropriate detection and mitigation 
provisions. But the listings provided by the tool facilitate 
the accomplishment of a robust design and assure that 
no critical failure mode is overlooked. Designing multiple 
detection and mitigation provisions for a given class of 
malfunctions or security concerns is referred to as 
defense-in-depth [4] because of its similarity with military 
doctrine for defending an important position by multiple 
defensive perimeters (mine fields, trenches, and block 
houses), and an example of this technique for the 
longitudinal channel of a flight control system is now 
discussed. 
 
 
A typical initiator of a serious longitudinal axis failure is a 
spurious high rate elevator command. Such a command  
can be detected, e. g., at the computer output, but the 
detection level must be set high enough to allow rapid 
elevator motions that may be required for obstacle 
avoidance. Most abrupt command changes can be 
prevented by this means of detection but probably not 
all. Those that escape detection will result in a high pitch 
rate, and this parameter can be used as a second line of 
defense. Because commanded pitch rate is usually 
available within the flight control data base, a criterion for 
failure detection can be the difference between 
commanded and actual pitch rate; this detection level 
can be set low and without impairing aircraft 
maneuverability because desired high rates of attitude 
change will be reflected in the commanded rate.  A third 
line of defense can be designed by noting deviations 
from the commanded pitch attitude or the desired flight 
path. MOCET as a design tool will show all these options 
and provide assistance with their implementation as 
described below.  
 

Figure 5 Selecting detection provisions 
 

 

IMPLEMENTATION 

There is an extremely large number of possible system 
and software failure modes for which the design should 
provide protection. But the designer can be directed to 
suitable detection and mitigation provisions by 
considering generic failure effects at a functional level as 
shown as a partial example in Table 1. 
   
The effects are ascribed to hardware components but 
they are also applicable to software that processes or is 
associated with the listed hardware output. 
 
When a signal with a typical noise content that changes 
the two or three least significant bits every computer 
cycle remains unchanged for several (n-) cycles this 
indicates with high probability that a failure has occurred 
in one of the elements of its channel. The condition is 
detected by subtracting the current signal value from that 
of each of the previous n-cycles. The diagnosis of a 
stuck output is made when all of the differences are 
zero. An example of the Simulink implementation of a 3-
cycle wait is shown in Figure 6. The assertion element 
initiates the corrective actions. The selection of n- 
depends on the expected noise content of the signal and 
the tolerable delay for furnishing an alternative.   
 
When a complete output failure can be detected by other 
means, such as the heart-beat shown for single 
processor in Table 1, it is preferable because the use of 
the n-cycle wait always involves a delay. If smart 
sensors are available, they generally detect output 
failures earlier than the n-cycle wait and are therefore 
preferable 
 
 
 
 
 
 
 

Figure 6 Implementation of 3-cycle wait 
 
 
 
 



 
 
Table 1 Generic Failure effects 
 
Function Failure 

Effect 
Detectio

n 
Compen-

sation 
Re-

marks 
Sensor - 

single 
Zero 

output 
n-cycle 

wait 
Analytical 

redundancy 
 

 Full scale Range “  
 Jump Range 

rate 
“  

Sensor – 
dual 

All Comparis
on 

Delete failed 
one 

Note 
1 

Sensor – 
triple 

All Voting Median value  

Processor 
- single 

No output Heartbeat Safety mode Note 
2 

 Stuck n-cycle wait “  
 Extreme 

output 
Range “  

Processor 
– dual 

All Comparis
on 

Delete failed 
one 

Note 
1 

Processor 
– triple 

All Voting Majority vote  

Memory - 
single 

No output Host 
processor 

Safety mode  

 Output 
error 

Error det. 
Code 

Repetition Note 
3 

  EDAC Cotinue or 
repeat 

 

Memory – 
dual 

All Comparis
on 

Delete failed 
one 

Use 
error 
det. 
code 

Memory – 
triple 

All Voting Majority 
value 

 

Bus Same as 
processor 

   

Output 
element 

Stuck Force 
feedback 

Safety mode  

 Broken/op
en 

Outer 
loop 

“  

Comparat
or 

No output Heartbeat Single mode Use 
current 
active 

 False 
positive 

Self-test “ “ 

 False 
negative 

External 
comp. 

“ “ 

 
 
Notes: 
1. The failed unit may be identified by (a) self-test, (b) 

deviation from last accepted value, (c) magnitude of 
output  

2.  The detection processing must be assigned to a 
mission computer or a specialized diagnostic 
processor                

3.  When repetition does not clear the problem use 
safety mode 

 
 
 
 
 

CONCLUSION 

The use of model-based software development 
facilitates the assignment of failure modes to each model 
element and thereby makes possible the systematic 
review of the failure modes. A developer who uses 
MATLAB/Simulink can thus employ MOCET to automate 
many steps of the software FMEA generation. This not 
only reduces the effort but also eliminates many sources 
of error and goes a long way in demonstrating that the 
FMEA is complete. 

Based on these capabilities of MOCET, we have now 
added features that permit the designer to prepare for 
the FMEA by letting the tool recommend failure detection 
and mitigation provisions. This represents a further step 
in reducing design effort, eliminating potential oversights 
and mistakes and in making the reviewer’s job easier.  

 In the future we are looking forward to steps for 
systematic incorporation of design-in-depth features. 
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