
08WATC-0023

Software FMEA Automated and as a Design Tool

Herbert Hecht and Rebecca Menes
SoHaR Inc.

Copyright © 2008 SAE International

ABSTRACT

We describe a method and tool (MOCET: Model based
Certification Tool) that generate computer-aided
software FMEA. The method and tool are used in
verification and certification of avionics programs and
have great benefits also in the design phase offering a
safer, more complete design while reducing the costs of
late stage discovery of safety issues. The use of a FMEA
tool at the early stage of design simplifies and optimizes
the implementation of Defense-in-Depth, a technique of
multiple layers of protection to prevent and mitigate
failures and accidents. MOCET’s ability to aggregate all
failure modes that produce a given high level effect
provides an ideal vehicle for optimizing placement of
broad spectrum recovery mechanisms during the design
stage.

INTRODUCTION

In previous work we have discussed the application of
the MOCET software FMEA generator in verification and
certification of avionics systems [1]. The current paper
shows how an extension of these capabilities can also
be put to use in the design phase to produce a robust
and certifiable design by:

• Identifying potential failure modes that can produce
safety or mission critical failure effects
• Inserting effective detection provisions
• Recommending suitable means for protecting
against the effects of the detected failures

The methodology described here is based on the use of
MATLAB/Simulink or a similar model-based design tool
that provides primitives with predictable failure modes
[2]. MOCET combines an intelligent parser of model
files, with sets of libraries that cover failure modes, local
and end effects and detection and mitigation methods.
The parser automatically translates a design model into
a “part list” tree (similar to a hardware Bill Of Materials).
The part list includes the hierarchical structure of the
model (how parts associate into subsystems and

systems). Once the hierarchical structure and part
identification are generated the tool can automatically
associate failures with each part. Based on the
hierarchical structure generated by the parser, the tool
can automatically identify local effects, and propagate
these to the system level. In its use as an FMEA
generator MOCET associates each failure mode with an
end (system level) effect. When the severity level of this
effect exceeds a user selected threshold, the added
design tool features can recommend detection and
mitigation measures to reduce the severity. The
effectiveness of the tool is a function of the quality of the
libraries. As an organizational tool, MOCET also
performs as an organizational knowledge base, the
libraries being a growing and living organism becoming
more useful as the tool is used and new entries are
saved in the failure, effects and mitigation/detection
directories. The following section summarizes relevant
features of MOCET as an FMEA generator. From this
we then develop the extensions that make it into an
effective tool for designing failure detection,
circumvention and recovery techniques. Because design
is not a completely deterministic activity, we find that the
tool provides choices rather than prescribes a single
provision.

MOCET AS AN FMEA GENERATOR

The purpose of an FMEA is to draw attention to failure
modes that can cause catastrophic or mission impairing
effects. These effects are usually identified by the
system engineer on the basis of fault tree analysis and
related techniques. For flight or engine control systems
the most serious effects are typically loss of output,
freezing of output, or un-commanded changes in output.
By convention, these are designated as severity I
effects. Somewhat less serious are low gain, sticky
(lagging) output and restricted range of output; these
increase the workload of the flight crew and may be
designated as severity II. Lower severity failure modes
include offsets from the desired attitude or flight path,
drift in attitude or flight path, and limit cycling. Once
these effects and the associated severities have been
decided on, they are input as end effects data into
MOCET.

The main part of the analysis consists of (a) importing
the model structure from the Simulink file, (b) selecting
failure modes suitable for each element and associating
failure effects with these, and (c) determining whether
the design provides failure detection and mitigation
measures. Details of these activities are presented in the
following paragraphs with the longitudinal flight control
system shown in Figure 1 serving as an example. When
the analyst selects the file for this control system
MOCET returns the screen shown in Figure 2. The
element designation and identification numbers are
automatically generated from the Simulink file by the
MOCET parser.

The listing is in function and format equivalent to a bill of
materials (BOM) that is conventionally used as the
starting point for hardware FMEA. This gives the
MOCET generated FMEA a much greater claim to
completeness than one that is generated from a
functional partitioning of the software. The definition of
functions is subjective; specifically, exception handling
may not be separated from the primary function that it
serves. Listing of failure modes according to designated
function may miss failures associated with sub-roles
such as exception handling. Since many software
failures are due to faulty exception handling [8, 9] the
suppression of it in the FMEA worksheets may lead to
incomplete safety assessment.

To further populate this screen the analyst selects a row
and right clicks which causes a failure modes menu to
drop down that is tailored to the specifics of the
highlighted block. This is shown in Figure 3. The local
failure effect is usually (but not always) uniquely
associated with the failure mode. The analyst selects
failure modes and effects that are applicable to the
highlighted row. A local failure effect different from that
shown on the screen can be substituted by editing.

Figure 1. Longitudinal control system

Figure 2 Initial MOCET screen for system of Figure 1

Further right-clicking then causes another menu to drop
down from which the end effect and severity are
selected as shown in Figure 4.

To protect against the highest severity failure effects the
design should include failure detection and recovery
(mitigation) provisions. To establish the existence of
these the analyst (usually working with the system
engineer) must review the design. The provisions that
are applicable are then entered into another drop-down
menu as shown in Figure 5. At present these actions are
not automated but based on techniques similar to those
described below in the Implementation section they will
be automated in future versions of MOCET.

SAE ARP4761 [7] defines the FMEA but does not
mention specifically the application to software.
However, the objectives for FMEA in that document are
applicable to our discussion. It is of interest to show how
ARP4761 may be used to guide the effort. The FMEA
furnished by MOCET is decidedly of the piece-part type
(App. G-3.2.2), with the Simulink blocks replacing
hardware piece parts. There are minor deviations in
format; e. g., MOCET provides no column for phase of
operation since software is typically analyzed separately
for each phase. Also, failure mitigation provisions
(redundancy, error correcting code, etc.) are included in
the MOCET worksheets but are not shown in the App. G
worksheets. Software is heavily involved in the
implementation of mitigation provisions and the analyst
must be informed about them. As will be discussed later,
MOCET can play an important part in identifying suitable
mitigation provisions where they were not present in the
original design. MOCET records failure effects at
several levels of the hierarchy (local, next higher and
system level) and thus does not need the Failure Modes

and Effects Summary (FMES) described in Appendix H
of ARP4761. However, if the overall safety assessment
process requires that an FMES be furnished, this can
easily be generated from the data fields of the MOCET
worksheets.

INTERACTION OF DESIGN AND
CERTIFICATION

The preceding section showed the use of MOCET as an
analysis tool in support of one of the milestones leading
to certification. We now turn to the proactive use of the
tool during design of equipment that is intended to be
certified for compliance with AC 25.1309-1A [3]. The AC
requires that the occurrence of malfunctions that can
impede “…continued safe flight and landing” shall be
extremely unlikely, defined as having a probability of
occurrence of no more than 10-9 per flight-hour. Also,
malfunctions that impose a significantly higher than
normal workload on the pilot must be controlled to a
probability of less than 10-5 per flight-hour. Thus, an

Figure 3 Failure Mode Selection path.

Figure 4 Selecting end effects and severity

important clue to the designer is a listing of where such
malfunctions can arise.

The use of an FMEA tool at the early stage of design
reduces the cost of late staged discovery of safety

issues and it simplifies the implementation of Defense-
in-Depth (multiple mitigation measures) as will be
discussed later. The ability of MOCET to aggregate all
failure modes that produce a given high level effect
provides an ideal vehicle for optimizing placement of
broad spectrum recovery mechanisms during the design
stage. As an example, where a failure in the processing
of an adaptive elevator command loop in a flight control
system can cause extreme surface deflections (system
effect: structural damage or loss of aircraft) it is possible
to design a non-adaptive controller to take over when
extreme surface deflections are commanded. However,
extreme surface deflections can also be caused by other
failures for which substitution of the non-adaptive
controller would not help with recovery. A broader
spectrum recovery mechanism will therefore be more
economical and reliable (each added recovery path
needs to be analyzed and tested).

As an added safety provision (or in some cases as an
alternate) MOCET can be tasked to list all failures that

result in a high rate of attitude change. Where the high
attitude rate is caused by a software problem, an
effective mitigation is switching to an alternate program;
but again, a high rate of attitude change may result from
some failures outside of the elevator command loop, and
recovery provisions for these failures can therefore be
combined with (or substituted) for those described
above.

Less catastrophic failures may result in slow attitude
changes that may not be detected at that level but that
will result in a detectable deviation from the desired
flight. Thus, additional broad coverage failure protection
may be provided at the flight path level. Broad detection
coverage is not desirable in many cases because it does
not point to a specific cause, leads to later detection than
specific provisions, and because of this permits
proliferations of faulty data that may persist even after

corrective measures for the original failure have been
completed. Therefore when a MOCET listing indicates
that a failure is detectable at a high hierarchical level it
does not necessarily mean that lower level failure
detection can be deferred. Engineering judgment is still
required to select appropriate detection and mitigation
provisions. But the listings provided by the tool facilitate
the accomplishment of a robust design and assure that
no critical failure mode is overlooked. Designing multiple
detection and mitigation provisions for a given class of
malfunctions or security concerns is referred to as
defense-in-depth [4] because of its similarity with military
doctrine for defending an important position by multiple
defensive perimeters (mine fields, trenches, and block
houses), and an example of this technique for the
longitudinal channel of a flight control system is now
discussed.

A typical initiator of a serious longitudinal axis failure is a
spurious high rate elevator command. Such a command
can be detected, e. g., at the computer output, but the
detection level must be set high enough to allow rapid
elevator motions that may be required for obstacle
avoidance. Most abrupt command changes can be
prevented by this means of detection but probably not
all. Those that escape detection will result in a high pitch
rate, and this parameter can be used as a second line of
defense. Because commanded pitch rate is usually
available within the flight control data base, a criterion for
failure detection can be the difference between
commanded and actual pitch rate; this detection level
can be set low and without impairing aircraft
maneuverability because desired high rates of attitude
change will be reflected in the commanded rate. A third
line of defense can be designed by noting deviations
from the commanded pitch attitude or the desired flight
path. MOCET as a design tool will show all these options
and provide assistance with their implementation as
described below.

Figure 5 Selecting detection provisions

IMPLEMENTATION

There is an extremely large number of possible system
and software failure modes for which the design should
provide protection. But the designer can be directed to
suitable detection and mitigation provisions by
considering generic failure effects at a functional level as
shown as a partial example in Table 1.

The effects are ascribed to hardware components but
they are also applicable to software that processes or is
associated with the listed hardware output.

When a signal with a typical noise content that changes
the two or three least significant bits every computer
cycle remains unchanged for several (n-) cycles this
indicates with high probability that a failure has occurred
in one of the elements of its channel. The condition is
detected by subtracting the current signal value from that
of each of the previous n-cycles. The diagnosis of a
stuck output is made when all of the differences are
zero. An example of the Simulink implementation of a 3-
cycle wait is shown in Figure 6. The assertion element
initiates the corrective actions. The selection of n-
depends on the expected noise content of the signal and
the tolerable delay for furnishing an alternative.

When a complete output failure can be detected by other
means, such as the heart-beat shown for single
processor in Table 1, it is preferable because the use of
the n-cycle wait always involves a delay. If smart
sensors are available, they generally detect output
failures earlier than the n-cycle wait and are therefore
preferable

Figure 6 Implementation of 3-cycle wait

Table 1 Generic Failure effects

Function Failure

Effect
Detectio

n
Compen-

sation
Re-

marks
Sensor -

single
Zero

output
n-cycle

wait
Analytical

redundancy

 Full scale Range “
 Jump Range

rate
“

Sensor –
dual

All Comparis
on

Delete failed
one

Note
1

Sensor –
triple

All Voting Median value

Processor
- single

No output Heartbeat Safety mode Note
2

 Stuck n-cycle wait “
 Extreme

output
Range “

Processor
– dual

All Comparis
on

Delete failed
one

Note
1

Processor
– triple

All Voting Majority vote

Memory -
single

No output Host
processor

Safety mode

 Output
error

Error det.
Code

Repetition Note
3

 EDAC Cotinue or
repeat

Memory –
dual

All Comparis
on

Delete failed
one

Use
error
det.
code

Memory –
triple

All Voting Majority
value

Bus Same as
processor

Output
element

Stuck Force
feedback

Safety mode

 Broken/op
en

Outer
loop

“

Comparat
or

No output Heartbeat Single mode Use
current
active

 False
positive

Self-test “ “

 False
negative

External
comp.

“ “

Notes:
1. The failed unit may be identified by (a) self-test, (b)

deviation from last accepted value, (c) magnitude of
output

2. The detection processing must be assigned to a
mission computer or a specialized diagnostic
processor

3. When repetition does not clear the problem use
safety mode

CONCLUSION

The use of model-based software development
facilitates the assignment of failure modes to each model
element and thereby makes possible the systematic
review of the failure modes. A developer who uses
MATLAB/Simulink can thus employ MOCET to automate
many steps of the software FMEA generation. This not
only reduces the effort but also eliminates many sources
of error and goes a long way in demonstrating that the
FMEA is complete.

Based on these capabilities of MOCET, we have now
added features that permit the designer to prepare for
the FMEA by letting the tool recommend failure detection
and mitigation provisions. This represents a further step
in reducing design effort, eliminating potential oversights
and mistakes and in making the reviewer’s job easier.

 In the future we are looking forward to steps for
systematic incorporation of design-in-depth features.

REFERENCES.

1. Rebecca Menes and Herb Hecht, “Safety and
Certification of UAVs”, SAE Aerotech Symposium
2007.

2. Theresa Robinson and Nayden Kambouchev,
MATLAB/Simulink Tutorial,
web.mit.edu/16.060/www/handouts/Matlabtut.pdf,
2004

3. Federal Aviation Administration, Advisory Circular
AC 25.1309-1A “System Design and Analysis”,
6/21/88. This circular has now been adopted by
international bodies.

4. Idaho National Laboratory, Control Systems Cyber
\security: Defense in Depth Strategies, Department
of Homeland Security, May 2006

5. Tony Savor and Rudolph E. Saviora, “Toward
Automatic Detection of Computer Failures”, IEEE
Computer, August 1998, pp. 68-74

6. Jana Mulacova, Failure Detection Expert Software,
Diploma Thesis, Czech Technical University,
Prague, 2007

7. SAE International, Guidelines and Methods for
conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment, ARP4761,
December 1996

8. Herbert Hecht and Patrick Crane, Rare Conditions
and their Effect on Software Failures, Proc. of the
1994 Reliability and Maintainability Symposium,
pp.334-337, January 1994.

9. C. K. Hansen, The Status of Reliability Engineering
Technology 2001, Newsletter of the IEEE Reliability
Society

CONTACT

Herb Hecht, SoHaR Inc. Tel: 310-338-0990
www.sohar.com
5731 W. Slauson Ave. Suite 175, Culver City, CA 90230
herb@sohar.com
Rebecca Menes, Address as above, becky@sohar.com

