
Copyright 2003 Chillarege Press Fast Abstract ISSRE 2003

An Alternative Software Reliability Assessment

Herbert Hecht, SoHaR Incorporated, Culver City, California

Abstract – UML software development tools facilitate

computer aided reliability assessment based on severity of
potential failure effects and effectiveness of protection
provisions. This assessment is more widely applicable than
one based on failure rate.

 INTRODUCTION

The measured failure rate (or one of its first cousins) has

long been the “gold standard” for software reliability1. In
current computing environments it can be inapplicable and
even misleading. Consider server software with an expanding
number of clients. More users are likely to cause an increase
in the failure rate though the software (and therefore its
reliability) are not changed. Another example is software
controlling a machine tool. The machine tool is aging,
causing more exception conditions to be encountered by the
program and hence more failures. The machine shop
supervisor sees a higher failure rate even though the software
remains the same.

Since there are problems with using failure rate as an
indicator of reliability in existing software, we looked for
alternatives for predicting software reliability during
development and that would continue to be valid in operation.
The severity of failure effects needed to be taken into account
so that preventive steps could focus on avoidance of the most
severe failures.

SOFTWARE FMEA

This latter requirement suggested a look at software

failure modes and effects analysis (FMEA), a topic that has
been under investigation for over 20 years2. But while FMEA

for hardware is widely used, it is rarely encountered for
software. An obvious reason is that hardware is generally
made up of parts with well-known failure modes; there is
no equivalent of this in software. Instead, software is
analyzed by “functions”. But these are subjective partitions
and there is usually no certainty that all functions that can
contribute to failure have been included.

UML-based software development tools permit us to
overcome this difficulty. In the UML approach the
smallest operational software construct is a method. If all
methods of a program work correctly, the program will not
fail. Conversely, if a method is faulty the program will fail
under some conditions. Thus, the method is similar to a
part. All methods are listed in the class chart of a program,
and thus the FMEA will be complete if all listed methods
have been analyzed. Because the class charts are computer
accessible files, the generation of software FMEA can be
partially automated, reducing both the labor required and
the potential for errors.

The computer-aided generation of a software FMEA
is shown in Figure 1. The entry in the component column
is generated automatically from the listing of methods by
the UML tool. Our program assigns the hierarchically
formatted ID (first screen at the top). The second screen
shows the assignment of failure modes. We provide three
default failure modes for each component: crash, stop
(with return of a symptom code), and output error. Other
modes can be added by the analyst. The local effect (third
screen) is usually assessed at the computer program
component (CPC) level. If the CPC incorporates protective
code the failure mode may not propagate at all or at a
reduced level. The presence of protection measures is
noted in the Detection Method column of the FMEA

worksheet.

 PROTECTION PROVISIONS

Examples of Detection Methods are
assertions, code checks on incoming and
outgoing data and sequence checks on
operations. Since these are implemented
as UML methods their failure modes are
covered by the worksheet. Further, they
can be tagged as “Detection Methods” by
the analyst and when referenced will be
automatically entered into the Detection
Method column. Once a failure mode is
detected, compensating measures can be
invoked, including use of default values,
repeating an operation and transferring to

Figure 1 FMEA Worksheet

Copyright 2003 Chillarege Press Fast Abstract ISSRE 2003

an alternate routine. The compensating provisions are also
implemented as UML methods and can be tagged and
analyzed in the same manner as the detection. Absent these
provisions the failure mode will propagate to successively
higher levels, eventually causing a serious system level effect.
Table 1 shows how the propagation of a crash failure is
affected by detection and compensation provisions at the next
higher level.

To be effective, the detection provisions should be close
to the source of the failure mode. This prevents contamination
of the data stream, provides useful diagnostics, and permits
invocation of the most appropriate compensation. If an
anomaly in the fuel flow monitoring routine is detected, the
last value of fuel flow can be used as a default for at least one
cycle. But if detection is relegated to a higher hierarchical
level, the anomaly will affect the entire engine management,
making diagnosis as well as recovery much more difficult.

Table 1. Effect of Detection and Compensation on

Propagation of a Crash

Detection and Compensation NHL Effect
None Crash
Detection only Stop
Detection and re-try Delayed output
Detection and default value Degraded output
Can call alternate method None

The failure effects are propagated to the system level,

such as the flight management system (FMS), where severity
designations are associated with each failure mode. A crash of
the FMS will probably cause the mission to be abandoned
which is conventionally considered a severity II failure. Crash
of a flight control system may jeopardize the safety of the
aircraft and will be considered severity I. Failures that impair
mission effectiveness (short of abandonment) are designated
severity III and all others severity IV.

 RELIABILITY ASSESSMENT

The reliability assessment will deal exhaustively with
all failure modes that lead to severity I and II failures, and
summarize the protection against severity III and IV failures.
For the highest severity failure modes it is essential that
detection is direct (close to the source) and that compensation

is immediate and effective, preferably by access to an
alternate routine or standby processor. For the lower
severity failure modes detection by effect (removed from
the source) can be acceptable, and compensation by default
value or re-try can be used.

This approach does not provide any estimate of failure
rates and thus makes software FMEA worksheets different
from those used for hardware. But if the assessment
described above is carried out correctly and shows no gaps
in fault coverage it will demonstrate to project
management that the software is reliable. Where gaps are
found, the required corrective action is in most cases
obvious. This assessment, tied to system effects, is
appropriate for management review and may be preferred
to one using failure rates. Where consistency with
hardware FMEA is essential, the assessment format
described here can be adopted for hardware.

The assessment has an important legacy to test: once a
failure mode is covered by detection and compensation
provisions, the emphasis in test can shift to testing these
provisions with fewer resources allocated to testing the
functional code. Because detection and compensation
provisions take a limited number of forms, test case
generation is simplified and the cost of test is reduced.

In addition to the computer-aided generation of
FMEA worksheets for UML-based programs we are
working on computer-aided generation of timed Petri nets
for the exploration of timing and sequence related failure
modes in real-time systems.

 ACKNOWLEDGMENT

This research has been supported by the DARPA
MoBIES program, headed by Dr. John Bay, and funded
under contract F33615-02-C-3253 for which Ray Bortner,
AFRL, is the technical monitor.

 REFERENCES

1 ANSI/AIAA Recommended Practice Software
Reliability, R-013-1992

2 Reifer, Donald J, "Software Failure Mode and Effects Analysis",
IEEE Transactions on Reliability, vol.28, no.3, August 79

