Integration of System Dependability and Software Reliability Growth Models for E-Commerce Systems

Myron Hecht, Yutao He, Herbert Hecht, and Xuegao An
SoHaR Incorporated
8421 Wilshire Blvd. Suite 201
Beverly Hills, CA 90211
{myron, yutao, herb, xuegao}@sohar.com

Abstract

This paper describes how MEADEP [SoHaR00], a system level dependability prediction tool, and SMERFS [Farr93], a software reliability growth prediction tool can be used together to predict system reliability, and availability growth) for complex systems. The Littlewood/Verrall model is used to predict reliability growth from software test data. This prediction is integrated into a system level Markov model that incorporates WAN (Internet) service interruptions, hardware failures and recoveries, redundancy, coverage failures, and capacity. The results of the combined model can be used to predict the contribution of additional testing upon availability, the economic value of additional testing, and a variety of other figures of merit that support management decisions.

1. Introduction

Growing expectations of immediate and dependable access to information is driving the need for higher fidelity measurement, modeling, and prediction – particularly in high transaction rate e-commerce applications. In such systems, availability has become the single most important attribute. In the words of the Chief Information Officer (CIO) of one of the 10 largest traffic web sites, “Availability is as important as breathing in and out [is] to human beings” [Fisher00]. Major web site and on-line information system outages now regularly make the front pages of major general circulation newspapers, and availability affects the market valuation of all firms doing significant amounts of commerce over the Internet.

E-commerce systems are complex on-line interactive systems incorporating custom developed applications with commercial off the shelf (COTS) hardware, COTS software, Internet gateways, and multiple Internet service providers. Due to a variety of causes, applications developed for large Internet sites are constantly being modified and enhanced. However, there is significant pressure to minimize the development and test schedule for such software and as a result, it is not always mature when placed into service. Although COTS components are generally more mature and change much less rapidly than the custom developed applications, in large systems with many such components, failures occur frequently. Thus, both developed applications and COTS contribute to system undependability. The results of a recent survey of 40 managers of e-Commerce systems showed that application software was the leading cause of site degradations, but that WAN service provider and server hardware failures were the leading causes of unscheduled total site outages [Metz00].

Traditionally, there have been two separate disciplines of computer reliability modeling: (a) systems reliability, characterized by tools such as CARE III [Bavuso85], HARP [Trivedi85], SAVE [Goyal87], SHARPE [Sahner96], or UltraSAN [Sanders95] and (b) software reliability characterized by models such as the Schneidewind model, the generalized exponential model, the Musa/Okumoto Logarithmic Poisson model, and the Littlewood/Verrall model [ANSI92].

System reliability models use stochastic analysis and combinatorial probabilistic techniques to predict reliability. The underlying assumption in these measurement-based approaches is that the fundamental failure mechanisms are triggered stochastically, i.e., are non-deterministic (“Heisenbugs”). The most common modeling techniques are Markov chains and reliability block diagrams. Such models have been used to evaluate operational software based on failure data collected from commercial computer operating systems for more than a decade [Hsueh87, Tang92, Lee93]. System reliability/availability modeling has been used to
evaluate availability for air traffic control software systems [Tang95, Tang99, Rosin99]. The models account for non-deterministic hardware and software failures [Lee93, Tang95]. The limitations of system reliability models is that they assume constant failure and recovery rates. While assumption may be largely true for the hardware and the system software, which is usually stable, it is less true in the applications, which are constantly changing.

Software reliability growth models use measured time between error reports or number of error reports in a time interval. In most cases, they evaluate the reduction in failure frequency during successive developmental test intervals to estimate the software reliability at the end of a time period. The primary limitation of such models is that they do not account for system architectures, i.e., they assume software executed in a single processing processor or node [Schneidewind96]. They can not address systems that incorporate LANs, redundancy, and Wide Area Networks (WANs), all of which contribute to system downtime.

Thus, neither the software reliability nor system reliability approaches used independently are sufficient to model a current information system. Only an integrated software/system reliability model can accurately model the growing number of Internet-based systems being used for critical services such as medical information, financial transactions, e-Commerce, and Voice-over-IP. Integrated modeling and prediction methods can trade off such seemingly heterogeneous entities as the software testing program budget against the Service Level Agreements (SLAs) of an Internet Service Provider. An integrated model can address such questions as

- Given a known cost of downtime and current test data, what is the economically optimal point at which to stop testing? What uptime benefit will be achieved by additional testing beyond this point?
- Based on current testing results, what is the highest system availability that is likely to be achieved?
- How much more testing will be necessary in order for the system to achieve the required availability?
- Is testing or additional redundancy a better strategy for achieving availability goals?

Although there has been general recognition of the need to incorporate software and system reliability into a single model (see, for example, [LaPrie96] and Wattanapongsakorn00), there has been little work in integrated software reliability growth and system reliability modeling. In one of the few examples of previous work, Schneidewind [Schneidewind96] used a reliability block diagram approach to represent a client-server system in which he incorporated reliability growth models. In this paper, we extend this approach to a more complex hierarchical model consisting of both reliability block diagrams and Markov chains for a correspondingly larger system. We will then demonstrate how the impact of test time against capacity and availability can be assessed. Finally, we will demonstrate that substantive economic decisions on test strategies and stopping criteria can be developed using such a model.

2. Methodology

The methodology for creating an integrated model consists of

1. Generating a system model that includes failure rates and recovery times parameters for all significant system elements.
2. Substituting the appropriate reliability growth equation for those parameters associated with software (primarily application software) whose reliability is changing (hopefully growing) in the course of the development period.
3. Evaluating the model and performing parametric analyses to determine the impacts of various combination of parameters -- including development time -- on overall system availability.

We used two software tools to implement this methodology: MEADEP [SoHaR00] and SMERFS [Farr93].

MEADEP (Measurement-based Dependability) is a system-oriented reliability and availability measurement, modeling, and prediction tool with integrated data analysis modules. MEADEP uses analytical methods to evaluate block diagrams and Markov models. The models are created with a graphical user interface. The models can be hierarchical, allowing the analysis of large systems through decomposition. A key characteristic of MEADEP, its parser, enables the incorporation of failure rates, which, while constant during the evaluation of a particular model under the assumption of an exponential distribution, can be varied over the development cycle. The ability to incorporate a changing failure rate of this
The software reliability prediction tool is SMERFS (Statistical Modeling and Estimation of Reliability Functions for Software) [Farr93], a well-known and widely accepted software application for evaluation of test data for failure rate and defect discovery rate prediction. The version of SMERFS used in this study included a total of 15 different reliability growth models. The input to SMERFS is a set of values consisting either of the time between discoveries of defects or the number of defects discovered per time period. SMERFS then uses maximum likelihood methods or least squares methods to estimate the parameters used for one or more of these models (depending on the type of input and user selected options). Its output includes the parameter estimates, predicted values and a measure of the goodness-of-fit using the chi-squared distribution [Farr88].

3. Example of Integrated Model
To demonstrate the principle of the combined model, we will use the example of an e-commerce system.

In our example, we assume a 2-tiered architecture in which the first tier performs web page serving and handles other aspects of the user interface while the second performs database operations. This section discusses an analysis of the first tier, which consists of 11 COTS PC Servers running the Microsoft Windows NT 4 operating system, web server software, and an application for processing user input. The hardware, operating system, and web server software are COTS applications with a fixed failure rate that can be measured from the system log as described in [Hecht97]. However, the application software is under development, and software reliability growth predictions models are more appropriate.

Data for this example were selected from Data Set 1 in the SMERFS distribution included in [Farr96]. The data were fit to multiple software reliability models in the SMERFS program. The best fit model based on the results were the Littlewood/Verall Bayesian model [Littlewood80, ANSI92]. The linear form of failure rate is [Farr96]

\[\lambda = \frac{\alpha - 1}{\sqrt{\beta_o^2 + 2\beta_{\text{fso}}(\alpha - 1)}} \]
Equation 1

in which the values of the \(\alpha \), \(\beta_o \), and \(\beta_1 \) parameters were determined by SMERFS.

Integration of this predicted failure rate with other COTS components of each server is represented by the Markov diagram shown in Figure 1. There are three states in the model: normal, PCSW_failed (any of the 3 major components of the server has suffered a failure resulting in the loss of service), and PCHW_failed (server hardware failure). The numbers below the state name represent rewards, i.e., the value of the state. A reward of 1 means that the system is fully functional, a reward of 0 means that the system is completely failed. MEADEP allows intermediate values of reward (i.e., between 0 and 1) in order to represent partial loss of capability. The use of such partial rewards will be discussed below. Table 1 describes the parameters, and Table 2 describes the transitions.

The following points should be noted:

(a) There are 4 failure modes considered in the model: hardware failure, application software failure, Internet server software failure, and operating system failure.

(b) The hardware failure is separated from software failures because the hardware failure requires replacement (assumed to take 1 hour) vs. a software restoration that can be achieved by means of a restart (assumed to require 15 minutes), and

(c) The application software failure modes are assumed to be crash, hang, and stop. We have not considered the case of an incorrect response with normal behavior because it is assumed that this type of error should have been removed during earlier development. Because the system being modeled is an e-Commerce application with relatively simple logic this is not an unreasonable assumption. However, by the addition of a state, incorrect response could be incorporated into the system model. For this failure mode, it would be more appropriate to use a model that predicts number of faults found rather than reliability (see for example, [Farr96]).

Figure 1 represents the Markov chain diagram for a single server, but as noted above, there are 11 front-end servers in the web site. The reliability growth model shown in Equation 1 is incorporated into the arc for software failures. Explanations of the variables, states and transitions are contained in Tables 1 and 2. Figure 2 shows how the model in Figure 1 is incorporated into a
higher level model that evaluates both the effects of redundancy and capacity loss.

Table 1. Server Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>Parameters in Littlewood/Verall linear failure intensity</td>
<td>1.86</td>
</tr>
<tr>
<td>α</td>
<td></td>
<td>1.06</td>
</tr>
<tr>
<td>β_0</td>
<td></td>
<td>1.73</td>
</tr>
<tr>
<td>μ_{PCHW}</td>
<td>Repair rate of the PC hardware, corresponding to a 1 hour MTTR</td>
<td>1</td>
</tr>
<tr>
<td>λ_{PCHW}</td>
<td>Failure rate of the PC hardware, corresponding to a 1000 hour MTBF</td>
<td>0.001</td>
</tr>
<tr>
<td>μ_{PC}</td>
<td>Restoration/restart rate of the PC hardware, corresponding to a 15 minute restart time</td>
<td>4</td>
</tr>
<tr>
<td>testtime</td>
<td>Test time in hours</td>
<td>500</td>
</tr>
<tr>
<td>$\lambda_{Webserv}$</td>
<td>Failure rate of the web server software, corresponding to a 1000 hour MTBF</td>
<td>0.001</td>
</tr>
<tr>
<td>λ_{OS}</td>
<td>Failure rate of the operating system software, corresponding to a 1000 hour MTBF</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 2. Server Model States and Transitions

<table>
<thead>
<tr>
<th>Origin State</th>
<th>Destination State</th>
<th>Expression</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>PCSW_Failed</td>
<td>$\lambda_{OS} + \lambda_{Webserv} + \frac{\alpha - 1}{\gamma_1^2 + 2\gamma_1\gamma_2 (\alpha - 1)}$</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>PCSW_Failed</td>
<td>Normal</td>
<td>μ_{PC}</td>
<td>Server software restart time</td>
</tr>
<tr>
<td>Normal</td>
<td>PCHW_Failed</td>
<td>λ_{PCHW}</td>
<td>Server hardware failure rate</td>
</tr>
<tr>
<td>PCHW_Failed</td>
<td>Normal</td>
<td>μ_{PCHW}</td>
<td>Server hardware replacement/repair time</td>
</tr>
</tbody>
</table>

Figure 1. Server model integrating application software reliability growth and static reliability parameters for hardware and COTS software

Figure 2. Server Subsystem Model Incorporating Server Model shown in Figure 1

The model consists of 7 states representing from 0 to 6 servers failed. The rewards of each state (i.e., the numbers below the state names) represent the loss of capacity as each server processor fails. Thus, S0, with all processors functioning, has a 100% reward. The loss of a single server processor, S1, results in a 5% loss of capacity (approximately), and has the value of 0.95, the loss of two servers results in a 10% loss, and so on. Beyond 6 failures, the web site will be taken off-line because of excessive response times due to the capacity degradation.

The transitions from left to right represent failures and are all of the form $(Nrs-n)\lambda_{rs}$ in which Nrs is the number of servers in the subsystem, n is the number of failed servers, and λ_{rs} is the failure rate of each server (derived from evaluating the model in Figure 1). The transitions from right to left are all μ_{rs} which is the restoration rate of the server. MEADEP defines an aggregate μ_{rs} from each lower level model and hence, this restoration time represents a weighted average of the hardware and software restoration times. The frame at the bottom of the picture is how MEADEP represents that the transitions λ_{rs} and μ_{rs} are defined by the lower level model, PC_server, in Figure 1.

The most significant observation to be made about Figure 2 is that software reliability growth predictions have now been integrated with system level elements.
including redundancy and with capacity. Thus, it is now possible to begin to make tradeoffs among: test time, capacity, and hardware failure rates, software failure rates, and restoration times.

Figure 3 shows the impact of test time on subsystem yearly downtime. If the required yearly downtime maximum is 20 hours, then the model predicts that the goal can be reached with approximately 200 hours of testing. However, if the requirement is 15 hours of downtime, then approximately 500 hours of testing will be necessary.

Figure 3. Server Subsystem Downtime (reward weighted) vs. Application Software Test time (software reliability growth predicted using the Littlewood/Verrall Model)

Figure 4 shows another tradeoff that can be made: hardware reliability vs. software test time. The figure shows predicted subsystem yearly down time for as a function of PC server hardware reliability for 5 different test times: 100 through 500 hours. If the downtime requirement for this subsystem is 12 hours, then the model predicts that the requirement can be met by any of the following alternatives:

- 500 hour test program with hardware having an MTBF of approximately 1900 hours
- 400 hour test program; hardware with an MTBF of approximately 2400 hours

It should be noted that these downtimes are reward weighted, that is the availability for the PC server subsystem has been multiplied by the reward associated with that state. If the only requirement were that 6 out of 11 PC servers were working (as opposed to providing a minimum capacity), then the downtime of the system would be less than 1 second.

- 300 hour test program, or hardware with an MTBF of approximately 7800 hours

Figure 4. PC server subsystem Hardware Reliability/Test Time tradeoff

4. Integration of the Server Subsystem into a Complete System Model

With the appropriate system model, it is possible to extend the results shown in the previous section to the system level. Figure 5 shows a simplified representation of the eBay Internet auction web site based on a description from the Los Angeles Times [Menn99]. The site is a 3-tier architecture consisting of dual redundant Internet Wide Area Networks (WANs), routers, the front-end PC servers describe above, and Database Management System (DBMS) servers.

Figure 5. Simplified Diagram of 3-tiered e-Commerce Site [Menn99]
Figure 6 shows the hierarchy of a MEADEP model that represents this system. The top level block diagram (not shown here) has 4 elements in series: the Internet backbone WAN, the gateway subsystem (routers and switches), the server subsystem, and the DBMS. Each of these blocks is in turn decomposed into Markov models. The server subsystem and individual server models described above are shown in contrasting colors. A complete description of this model can be found in [Hecht01].

Figure 6. MEADEP hierarchical model representing Figure 5.

With the complete model, it is possible to perform a higher level of economic analysis in which software reliability growth can be traded off against any of the other 28 input parameters. A complete discussion of such tradeoffs is not possible within the scope of this paper. However, an example of such a result is shown in Figure 7. In this figure, the annual outage cost and the testing cost (also assumed to be annually recurring based on continuous updates) are plotted against the total system failure rate. The system testing costs are assumed to be $1500 per hour and the outage time costs are assumed to be $25,000 per hour. Under these assumptions, the lowest total cost is achieved with a reward weighted failure rate in the range of 0.01 to 0.015 (approximately 70 to 100 hour MTBF), and the total optimized annual cost related to availability (both test and outages) is approximately $1,000,000. This reward weighted failure rate integrates the impact of both degraded (i.e., reduced capacity) and full service operation and is a measure of performability. The unweighted failure rate, i.e., the probability that the site will be totally off-line rather than degraded, is 0.0012 per hour.

5. Discussion and Conclusions

This paper has demonstrated the value of integrating two mature and complementary, but until now, separated modeling and prediction approaches. As a result of this integration, it is possible to make better predictions on the economically achievable reliability of software intensive systems that incorporate redundancy and in which capacity and response time have economic value. As such the technique is also applicable to many classes of high assurance systems in space, air traffic control, military information (e.g., C3I and logistics), and manufacturing, financial, and medical applications.

The model results should be interpreted with respect to the following limitations:

1. **Software test data.** As has been noted in many articles and papers on the subject, proper data gathering is essential for the validity of such models. The test data that are used should be gathered in accordance with the anticipated operational profile [Musa96] and should reflect a variety of testing strategies to avoid test saturation.

2. **Random failures.** The “heisenbug” assumption noted above assumes that failures occur randomly and can be modeled as a stochastic process. This is largely true even for software failures. Deterministic software failures are easily reproduced and generally fixed early. Those that are difficult to reproduce are by definition unpredictable and therefore non-deterministic. Because most failures in software, hardware, and communications systems are random and are the largest contributors to system downtime, the modeling and decision making approach described...
here is valid. However, the modeling approach does not address deterministic phenomena such as fundamental design flaws or security challenges that have been responsible for some high visibility recent outages at large web sites.

References

[Metz00] J.G. Metz, “Managing E-Commerce for 100% Uptime”, Internet Week Learning Programs, May, 2000

[SoHaR00] MEADEP home page, http://www.sohar.com/meadep

