
1

To appear in IEEE Transactions on Nuclear Science, June 1998.

MEADEP and Its Application in Dependability Analysis
for A Nuclear Power Plant Safety System

Dong Tang, Myron Hecht, Xuegao An
SoHaR Incorporated, Beverly Hills, California

Robert Brill
Nuclear Regulatory Commission, Washington DC

Abstract

Although there are several measurement and model based
approaches to assessing the compliance of critical computing
systems with reliability requirements, applying these approaches
requires sophisticated data analysis and mathematical skills so
that reliability engineers often hesitate to perform such a task.
The need to develop cost effective, credible, and easy-to-use
tools to reduce difficulties in performing such tasks has thus
been apparent. This paper presents a tool of this kind —
MEADEP. MEADEP integrates techniques in graphical user
interface programming, database engineering, dependability
modeling, and statistical/numerical analysis, and provides a user-
friendly interface for non-expert users. Use of MEADEP on
failure data from measurements produces quantitative
evaluations of dependability for critical systems, while greatly
reducing requirements for specialized skills in data processing,
statistical analysis, dependability modeling and model solution
from the user. The application of MEADEP on safety systems
is demonstrated by modeling dependability for a nuclear power
plant safety system based on the Eagle 21 architecture and its
early field failure reports.

I. INTRODUCTION

As safety and other critical systems in which software
plays decision making and control roles are increasingly applied
in the field such as nuclear power safety management and air
traffic control, it becomes necessary to develop objective
methods to assess the compliance of these systems with
reliability requirements. In this regard, quantitative assessment
of dependability for critical digital systems is a vital issue.1

There are three general approaches to dependability evaluation
for computing systems: in-process assessment, pre-deployment
assessment, and in-field assessment [18]. This classification can
be mapped to the three phases of dependability evaluation
defined in [9]: design phase, prototype phase, and operational
phase.

In the design phase, a system is typically modeled by using
probabilistic models [2, 11, 21] or simulation methods [5, 26].
This approach relies on component level failure rates published
in handbooks or supplied by manufacturers. The approach
provides an early indication of system dependability, but many
assumptions have to be made in order to build analytical or
simulation models. These assumptions as well as the underlying
parameters later need to be validated by actual measurements.

In the prototype phase, assessment is typically done by
product testing and reliability growth modeling [16]. This
approach involves fewer assumptions than the first, but it can
address the reliability growth only for software with failure rates
from 10 to 10 per hour [3]. Reliability growth models do not�1 �5

furnish creditable predictions when there are few observed
failures, as must be the case for safety systems. In addition,
these models lack ability to account for the internal structure of
a complex system with hardware, software, redundancy
provisions and fault recovery processes.

Measurement-based dependability evaluation [9, 23] is
well suited for the operational phase. In many cases, it is
possible to use a combination of measurement and dependability
models to develop a quantitative assessment as shown in [7, 14,
23]. Early studies of DEC [4] and IBM [8] operating system
failures found that there is a strong correlation between system
workload and software failures. Further research on mature fault
tolerant real-time systems showed that residual software faults
lead to a failure behavior which can be characterized by a failure
rate and a certain failure arrival distribution [1, 7, 17] and that
a majority of such failures could be masked (without obvious
impact on applications) by the use of physical redundancy [6,
15, 23]. These results provide a basis for modeling software
failures as a stochastic process for real-time and fault tolerant
systems.

Not only can the measurement-based dependability
evaluation approach be used in the system operational phase, it
can also been applied to the late testing phase of a software
system as demonstrated in [23]. The primary advantage of this
approach lies in use of measurements and models for
interpretation of the measurements. Based on measurements, the
approach produces various dependability measures (MTBF,
availability, etc.) with stated confidence levels. The
measurement-based dependability evaluation methodology
developed in [24] consists of feasible methods in data collection

The dependability concept was proposed in the 15 International1 th

Symposium on Fault-Tolerant Computing (FTCS-15) [12] and revised
in FTCS-25 [13]. Dependability is defined as the “property of a
computer system such that reliance can justifiably be placed on the
service it delivers.” Major measures of dependability include reliability,
availability, safety, and maintainability.

2

and processing, statistical analysis, and dependability modeling. were estimated from data or given by users.
It not only evaluates system dependability based on a
statistically significant number of failures, but it also evaluates
system dependability lower bounds at a specified confidence � Pie chart for event distribution
level where failures were rare. � Progressive curves over time for Mean Time Between

However, applying measurement-based dependability
evaluation approach involves difficulties in data processing,
parameter estimation, model specification, and appropriate
mapping from data to models. It is costly and time consuming
for reliability engineers to overcome these difficulties. The need
to develop tools that can reduce these difficulties has thus been
apparent. In this paper, we introduce such a tool, MEADEP
(MEAsure DEPendability), and demonstrate its application in Results evaluated from models include:
modeling and analyzing dependability for a nuclear power
plant’s safety system. MEADEP integrates techniques in
graphical user interface (GUI) programming, database
engineering, dependability modeling, and statistical/numerical
analysis, to provide non-expert users an easy-to-operate The major functions of MEADEP are: data processing and
environment for producing dependability assessments for real editing, parameter estimation, graphical data analysis, graphical
systems. Use of the tool on failure data from measurements model generation and model solution. Particularly, MEADEP
produces quantitative assessments of dependability for critical has the following features:
systems, while greatly reducing requirements for specialized
skills in data processing, statistical analysis, and dependability
modeling from the user. Because MEADEP facilitates the use of
measurement-based dependability analysis methods and reduces
the cost of such analyses by providing various data processing Estimation of parameters from data: Typically used
and dependability analysis functions, it can become an integral parameters (failure rate, coverage, etc.) and their upper and
part of engineering projects where dependability is an important lower bounds at a certain level of confidence are estimated by
consideration. statistical routines taken from mature numerical libraries.

The rest of this paper is organized as follows: Section 2 Graphical presentations of data: A number of graphical
gives an overview of MEADEP by introducing its input, output, formats are provided to display dependability characteristics for
and features. Section 3 describes the MEADEP internal data and results evaluated from models.
structure by introducing its modules and functions. Section 4
discusses the MEADEP application in analyzing a nuclear
power safety system to identify the most important parameter
and its most sensitive value segment. Section 5 provides
concluding remarks.

II. OVERVIEW OF MEADEP

MEADEP is a failure data based dependability analysis
and modeling tool. Dependability measures generated by
MEADEP are either directly obtained from data, such as failure
rate and event distribution, or evaluated by combined use of
failure data and dependability models, such as system level
reliability and availability. Thus two basic types of input to
MEADEP are:

� Data — Structured failure reports containing information
on failure time, location, impact and other failure
characteristics

� Models — Graphical specifications of dependability
models including reliability blocks and Markov chains

The output of MEADEP consists of results obtained from
data and results evaluated from models where model parameters

Results obtained from data include:

Events (MTBE) and its confidence interval
� Histogram for Time Between Events (TBE) and Time To

Recovery (TTR), with super-plotting of typical analytical
functions, accompanied by the results of their goodness-
of-fit tests

� The mean, lower and upper bounds for failure rate,
recovery rate, and coverage

� Mean Time Between Failures (MTBF)
� Reliability for a given time period
� Steady-state availability

Support for data conversion: Structured data in a variety
of formats (ASCII Delimited Text, Access , dBASE , Paradox ,® ® ®

etc.) can be converted to the MEADEP data format.

Graphical Input of models: A graphical “drag and drop”
interface allows the user to create models hierarchically out of
reliability block diagrams (including the k-out-of-n block) and
Markov reward models [Goyal87].

Parametric analysis in solution: The model solution part
of MEADEP allows a model to be run with a range of user-
specified values for a selected parameter including time. The
results can be displayed as a curve.

A library of dependability models: A library of
dependability models, including primitive models for typical
fault-tolerant architectures and complex models for real critical
systems are included in MEADEP for reuse by users.

User friendly interface: For all of its functions, MEADEP
provides a user-friendly GUI featuring menus, dialogs, pictures,
printing previews, and extensive on-line help information.

The limitation in measurement time (less than a few years
in most cases) during which data can be collected for analysis
determines that measured component level failure rates cannot
be lower than 10 per hour (assuming no more than 10 copies�6

for each component are running during the measurement
period). Thus the application of MEADEP is limited to systems
with this level of failure rates at the component level. To assess

Graphical User Interface (GUI)

Results Results

Specification

Parameters

Various Databases or
Structured Text Format

Library
Model Profile

Graphical
Modeling File

Modeling File

Batch Processing Data Editor

(DEA)
Evaluator
Model

& Analyzer
(ME)

Data Model
Generator

(MG)

Text

Source Data
(DPP)

Pre-Processor

Note: Rectangles represent executable modules. Ellipses represent files.

Internal DataMEADEP
Database

3

Figure 1 MEADEP Organization

extra high dependability, accelerated testing and evaluation graphical analysis can generate: pie-chart for event distribution,
methods may be required, in addition to the measurement-based histogram for TBE or TTR distribution, and progressive curves
evaluation approach addressed by MEADEP. for MTBF and its confidence interval over the time axis. The

III. ORGANIZATION OF MEADEP

 MEADEP is organized into modules interconnected as
shown in Figure 1. The Data Preprocessor (DP) module,
interacts with the user to convert source data to the MEADEP
internal data. The source data can be manually generated
structured trouble reports or computer generated event logs. The
Data Editor and Analyzer (DEA) module is used to edit internal
data and to perform statistical analysis on the data. Parameter
values estimated from the data by this module can be inserted
into the text modeling file generated by another module, the
Model Generator (MG). The MG module provides a graphical
user interface for the user to draw model diagrams and then to
generate, from the diagrams, a text modeling file that contains
model specifications suitable for solution. Model diagrams can
be imported from library files containing predefined models to
save development time. The Model Evaluator (ME) module
produces results based on the model specifications and
parameters in the text modeling file. All modules are integrated
with the Graphical User Interface (GUI).

Source data formats supported by MEADEP include
ASCII delimited text and a variety of databases such as Access ,®

dBASE and Paradox . The MEADEP data are composed of® ®

records representing events and stored in the Access format.®

The data conversion performed by the DP module is guided by
a mapping, supplied by the user, between source data fields and
the MEADEP data fields. The user is also allowed to generate
internal data manually by typing in each record with the DEA
module. This option will be useful when the source data is hand-
written event logs.

The DEA module works on the data with the above format
and performs statistical analysis. It has three major functions:
data editing, graphical analysis, and parameter estimation. The

parameter estimation provides the mean, upper and lower
bounds at a specified confidence level for: MTBF, Mean Time
To Recovery (MTTR), failure rate, recovery rate, and fault-
tolerance coverage (estimates are also given even if failures are
rare). These estimates can then be inserted into a text modeling
file (discussed later) to initialize model parameters.

The MG module is a graphical “drag and drop” interface
for constructing dependability models. A model is developed
hierarchically, from the top level to the bottom level, forming a
tree-structure. Each node in the tree is a diagram of serial or
parallel reliability blocks (block diagram), or a k-out-of-n model
(block diagram), or a Markov chain (Markov diagram). The user
can navigate from one diagram to another to build models. When
the model construction is completed, the diagrams can be saved
in a graphical modeling file for reuse. Meanwhile, MG can
generate a text modeling file which contains model
specifications for directing the ME module to solve the model
and to generate results.

A library of model profiles is provided with MEADEP. A
model profile, or a library file, is a graphical modeling file that
defines the structure of a dependability model for a particular
system or subsystem, but does not contain parameter values. It
can be read into a screen diagram in the modeling process. Thus
the user can make use of these model profiles in developing his
own models. The user can also save frequently used model
diagrams as library files for reuse. This provision can greatly
reduce model construction time.

The ME module has two major functions: editing the text
modeling file (editor) and evaluating the model (evaluator). The
editor allows the user to revise models and parameters and then
to see the effect of revisions on results immediately. The
evaluator provides regular results and parametric analysis. For
the regular results, the model is evaluated once and one set of
results generated. In the parametric analysis, multiple sets of
results are generated for a user-specified range for a parameter.
Graphical representation for these results can also be generated.

All interactions between the user and the software
modules discussed above are through a graphical user interface.
The interface provides convenient menus, dialogs, pictures,
printing previews, and extensive help information. One of the
useful MEADEP features is its ability to convert a model
diagram or a graphical output (histogram, pie-chart, etc.) to the
popular Windows metafile format (wmf). The format allows the
diagram or graph to be imported to Windows-based word
processors such as Microsoft Word and WordPerfect (Figures
2-4 in this paper were generated in this way).

MEADEP was developed on Windows 95 using Microsoft
Visual C++, the Open Database Connectivity interface, the
IMSL Numerical libraries, and the Olectra Chart graphical® ®

package. The parameter estimation methods used were based on
[10, 23], and the model solution methods used were based on
[19, 27]. For several test cases, including complex and simple

4

models, results produced by MEADEP matched those produced
by SHARPE [20].

IV. APPLICATION OF MEADEP ON
A NUCLEAR POWER PLANT SAFETY SYSTEM

In critical applications, there are two broad categories of
digital systems: (1) continuously operating real-time systems,
and (2) on-line protection systems. The operational profiles
radically differ for the two categories: continuous input
(workload may fluctuate) for the first and intermittent input (rare
events) for the second. The first category requires high
availability and can tolerate component-level failures by
redundancy provisions. Computer operating systems, air traffic
control plant process control systems all fall into this category.
Most previous work on measurement-based dependability
evaluation has been for systems in this category as reviewed in
[9]. The second category requires successful responses to
emergent demands and a failed response can result in the loss of
life and property. The nuclear power plant’s safety system is a
typical representative of this category. MEADEP has been
applied to the first category in evaluating operational availability
for two air traffic control systems [25]. This section
demonstrates the MEADEP application on the second category
by analyzing the sensitivity of the plant Mean Time Between
Hazards (MTBH) to key parameters for a nuclear power plant’s
safety system.

A. Dependability Modeling

The modeled configuration has two major components: a
plant and a digital safety system which protects the plant by
responding to and processing challenges. One of the safety
systems installed in the plant studied was the Eagle 21 [29]
digital safety system. A 3-level hierarchical model was
developed for this configuration where levels 2 and 3 were
based on the architecture of Eagle 21. Figure 2 shows the top-
level plant model which reflects the intermittent operating
profile. Figure 3 shows the middle-level model, a safety system2

which consists of four channels working on a basis of 2-out-of-4
votes for a reactor trip (shut down reactor). Figure 4 shows the
bottom-level model, a single channel which consists of four
components. In this analysis, channel failures are assumed to be
of the Byzantine type because this type is the worst case failure3

mode and is hazardous to the protection function. The notation
used in these figures is explained below.

S Normal/safe state in which either both plant and safety systemns

are functioning within technical specifications or the plant is in
a safe trip (reactor is shut down safely)

S Safety processing state in which the safety system is processingsp

a challenge

S Safety failure state in which the safety system is not able tosf

respond to a challenge properly while the plant is functioning
within technical specifications

S Plant hazard state which is the result of a failure of the safetyph

system to process a challenge successfully in terms of initiating
a necessary reactor trip

P Probability of success upon demand, i.e., the safety system willS

be successful in responding a challenge (initially set to 0.9999)
r Arrival rate of challenges from the plant requiring a response of

the safety system (assumed to be once a year, a typical value)
� Challenge processing time (assumed to be a half hour, a

conservative assumption)
� Failure rate of the safety system (evaluated from the safetyss

system model in Figure 3)
µ Rate for detection and handling of a safety system failuress

(evaluated from the safety system model in Figure 3)
µ Recovery rate of the plant after a hazardous event (which has nof

impact on the plant MTBH)
S Normal state in which all the four channels are functioning0

properly
S State in which one channel has failed and the output of the failedn

channel votes for “no trip”
S State in which one channel has failed and the output of the failedy

channel votes for “trip”
S State in which two channels have failed and both failed channelsnn

vote for “no trip”
S State in which two channels have failed and one failed channelyn

votes for “trip” and another failed channel votes for “no trip”
S State in which two channels have failed and both failed channelsyy

vote for “trip”
S State in which at least three channels have failed and at leastnnn

three failed channels vote for “no trip”; This state is equivalent
to state S in Figure 2 because the safety system would generatesf

a “no trip” signal should a challenge arrive.
S State in which three channels have failed and at least one of theyxx

failed channels vote for “trip”
S Plant trip state (reactor is shut down)trip

P Probability that the channel output votes for “no trip”, given an

channel failure (assumed to be 0.5)
� Failure rate of a channel (evaluated from the channel model inc

Figure 4)
µ Recovery rate of a channel (evaluated from the channel model inc

Figure 4)
� Common mode failure rate for the safety system (80%com

confidence upper bound based on no common mode failure for
10 years)

T Failure detection and handling time, given that at least threedh

channels have failed (assumed to be one hour)
T Plant trip duration (assumed to be 50 hours)trip

IO The I/O component of a channel
LP The Loop Processor component of a channel
Tester The Tester component of a channel
Power The Power supply component of a channel
�, µ Failure rate and recovery rate for the above components (� is

estimated from failure data and 1/µ is assumed to be one hour)

In Figure 2, if a challenge arrives in the normal/safe state,
the safety system will respond to it successfully with probability
P and go to the safety processing state S (modeled byS sp

transition P *r, from S to S). During the safety processing, ifS ns ps

the safety system fails due to random failures, the plant will be
in the hazard state (transition � , from S to S). Otherwise, theSS sp ph

safety system will go back to the normal/safe state after the
mean processing time � (transition 1/�, from S to S). When asp ns

The heavy frame in this diagram means parameters �ss and µss2

are evaluated from the lower level model SafSys. Similar for other
diagrams.

The faulty channel continues execution and lies when asked for3

information [22].

���������
����������
	
�����
�����

�
��
���
	��

�	��

��� ���

	

���

��������

����

��

�

��

��

������
����	
�
�����
�����	��������

�������
��
��

	��
�� 	����

	����

�
��

���	�������

�	���������������

�������������

��������

 ��	�������

����

��

 ������

��

���	�������

��

 ��	�������

�������

����

 ������

��

�������

�!� �!""

�!!

�!

����

�����

��

�����

����	�
���

��

������

�������	�	

��

��

����������

��

��

���������

��

5

Figure 2 The Nuclear Plant Model

Figure 3 The Safety System Model (SafSys)

Figure 4 The Safety Channel Model (Channel)

 challenge arrives in the normal/safe state, the safety system may major goal for this model. Sometimes the safety system random
respond to it unsuccessfully due to hardware/software design or failures occur in the normal/safe state and enters the safety
implementation problems and go to the plant hazard state failure state S (transition � , from S to S). The safety
(transition (1�P)*r, from S to S). Thus, maximizing P is the system will go back to the normal/safe state when the safetyS ns ph S

4
sf SS ns sf

5

An example of such failures is that the software makes a wrong An example of such failures is that a problem (e.g., memory4

judgement on an unusual combination of sensed physical parameters leaking) of the underlying operating system blocks the running of the
such that it fails to initiate a necessary trip. application software for all channels, i.e., a common mode failure.

5

�com < �ln(�)
T

�

�ln(0.2)
10 years

� 1.84×10�5/hour

6

(1)

system failure is detected and handled (transition µ , from S to Table I. ss sf

S). But during the failure detection and handling period in the Eagle 21 component failure rates estimated from datans

state S , should a challenge arrive, the plant would fail to initiatesf

a trip and would go to the plant hazard state (transition r, from
S to S) because the safety system is not able to vote for “trip”sf ph

in this state.

In Figure 3, each channel can fail with its output left at
either a state voting for “no trip” or a state voting for “trip”,
before the failure is detected and handled. When at least three
channels have failed (due to either independent or common
mode faults) and have left at least three votes for “no trip” (state
S), the safety system would not respond a challenge correctlynnn

because the required 2-out-of-4 votes for “trip” never satisfy in
this state. This state is regarded as the failure state of the safety
system and is equivalent to state S in Figure 2. Minimizing thesf

occupancy probability of this state is the major goal for this
model. The common mode failure rate (�) and the failurecom

detection and handling time (T) are key parameters fordh

minimizing this occupancy probability. All of the other states in
this model do not affect the ability of the safety system to vote
for “trip” in case a challenge arrives, and therefore none of them
is designated as a failure state.

The diagram shown in Figure 4 is a rough modeling of the
four components in an Eagle 21 channel. Although the four
components can be further decomposed at lower levels, this
further detailed modeling will not have much impact on the
results because the single channel failure rate has little effect on
the results, according to our sensitivity study.

B. Parameter Estimation

The data source was unstructured failure reports in the
letter form generated for the early use of Eagle 21, including the
debugging phase of its initial installation, in the Sequoyah Unit
1 and Unit 2 during a 2-year period [28]. Since the initial
debugging, Eagle 21 has been operating in the field without a
common mode failure for at least 10 years. For the purposes of
this study, this data set which reflects the reliability of Eagle 21
in the early installation and operational phase was used to
estimate upper bounds of the channel level failure rates.

In our previous study [24], most of the failures in the
above data were found to be hardware problems and only a few
of them were identified to be software related. The study
classified these failures by the Eagle 21 components, as shown
in Table 1, which permits to estimate the �’s in Figure 4. Based
on the reported dates, it was identified that the failure data
represented a total of 1,130 operational unit days. Since each
unit has four channels, this translates to a total of 108,480
operational channel hours. Thus, the channel component level
�’s can be calculated from this information. The results are also
listed in Table 1, where the mean failure rates, instead of the
upper bounds of failure rates, are estimated. This is because the
underlying failure data reflect the early phase reliability of Eagle
21 whose current reliability should be much better. Notice that
failure rates estimated from these detected failures can be
viewed as upper bounds of the Byzantine type failures modeled.

Eagle 21 Number of Failures Mean Failure Rate
Components

Tester 34 3.13×10�4

I/O 13 1.20×10�4

Loop Processor 11 1.01×10�4

Power Supply 9 8.30×10�5

In addition to the above component level failure rates, an
upper bound of the Eagle 21 common mode failure
(simultaneous failure of at least three channels) rate can also be
estimated. Since Eagle 21 has been operating in the field without
a common mode failure for at least 10 years, by [24], an upper
bound at the 80% confidence level is given by

For all other parameters, because of lacking real data, they
were assumed to take typical or conservative values, as shown
in Figures 2-4, for the demonstration purpose. Some key
parameters will be varied on reasonable ranges in the following
sensitivity analysis.

C. Sensitivity Analysis

The dependability measure to evaluate in this analysis is
the plant Mean Time Between Hazards (MTBH), i.e., the mean
time to state S (Figure 2) which represents a failure of theph

safety system to initiate a necessary reactor trip in response to a
challenge due to its computer hardware or software (design or
random) faults. The MEADEP parametric analysis functionality
was used on the above model to investigate the impact of the
following three parameters upon the plant MTBH: (1) the safety
system common mode failure rate � , (2) the safety systemcom

failure detection and handling time T , and (3) the probabilitydh

of success upon demand P . When one of these parameters wasS

selected for sensitivity study, it was varied in a reasonable range
and all of the other parameters remained unchanged. The results
are plotted in Figures 5-7.

The results showed that the plant MTBH is not very
sensitive to � and T . For the selected parameter ranges, thecom dh

variance of MTBH is about 8% (Figure 5) and 2% (Figure 6).
However, the plant MTBH is extremely sensitive to P : when PS S

increases from 0.999 to 1, MTBH increases from 1000 years to
291,000 years, i.e., an increase by 290 times (Figure 7). The
largest increment segment is between 0.99999 and 0.999999
(from 74,500 years to 225,600 years) and achieving a value in
this range is the most rewarding. It is clear that the most
important parameter is P , the probability of success uponS

demand, and achieving a high value and estimating the achieved
value for this parameter should be a key effort in the system
development.

9700

9750

9800

9850

9900

9950

10000

10 20 30 40 50

Mean Time Between Common Mode Faliures (years)

M
T

B
H

 (
ye

ar
s)

8400

8600

8800

9000

9200

9400

9600

9800

1 2 3 4 5

Failure Dection and Handling Time (hours)

M
T

B
H

 (
ye

ar
s)

0

50000

100000

150000

200000

250000

300000

0.999 0.9999 0.99999 0.999999 1

Prob. of Success upon Demand (Ps)

M
T

B
H

 (
ye

ar
s)

7

Figure 5 Sensitivity of Plant MTBH to 1/�com

Figure 6 Sensitivity of Plant MTBH to Tdh

Figure 7 Sensitivity of Plant MTBH to PS

One approach to estimating P is by means of measuringS

the proportion of successful test runs from test data. Stress
testing techniques may be needed to accelerate the arrival rate of
challenges from the plant requiring a response of the safety
system. Because safety systems typically have fairly simple and
well defined functions, and because these functions must

generally be unambiguous and effective, their success can be
described as a simple Bernoulli trial and the MEADEP DEA
module can be used to determine the confidence interval for this
measure. However, the validity of this approach is based on the
assumption that the test environment is representative of the
plant operational environment. But determining whether the test
environment is sufficiently similar to the operational
environment is not always straightforward.

V. CONCLUSION

In this paper, we discussed a measurement-based
dependability modeling and evaluation tool — MEADEP.
MEADEP provides a user-friendly, graphical interface for non-
expert users. Features of MEADEP include: converting data in
various formats to the MEADEP format, graphical data
presentation and parameter estimation, graphically building of
dependability models, availability/ reliability calculation and
parametric analysis. Use of the tool on failure data from
measurements produces quantitative assessments of
dependability for critical systems, while greatly reducing
requirements for specialized skills in data processing, statistical
analysis, and dependability modeling from the user. We also
demonstrated the application of MEADEP on safety systems by
modeling and analyzing a nuclear power plant’s safety system
based on the Eagle 21 architecture and its early field failure data.
A sensitivity analysis for key parameters was performed on
reasonable parameter ranges.

VI. ACKNOWLEDGMENTS

This work was supported by the U.S. Nuclear Regulatory
Commission (NRC) under Contract NRC-04-95-081. However,
the opinions and viewpoints expressed herein are the authors’
personal ones and do not necessarily reflect the criteria,
requirements, and guidelines of the NRC.

VII. REFERENCES

[1] E. N. Adams, “Optimizing Preventive Service of Software
Products,” IBM Journal of Research & Development, Jan.
1984, pp. 2-14.

[2] J. Arlat, K. Kanoun and J. C. Laprie, “Dependability
Modeling and Evaluation of Software Fault Tolerant
Systems,” IEEE Transactions on Computers, Vol. 39, No.
4, April 1990, pp. 504-512.

[3] R. W. Butler and G. B. Finelli, "The Infeasibility of
Quantifying the Reliability of Life-Critical Real-Time
Software," IEEE Transactions on Software Engineering,
Vol. 19, No. 1, Jan. 1993, pp. 3-12.

[4] X. Castillo and D. P. Siewiorek, “A Workload Dependent
Software Reliability Prediction Model,” Proceedings of
the 12 International Symposium on Fault-Tolerantth

Computing, June 1982, pp. 279-286.

8

[5] K. K. Goswami and R. K. Iyer, “Simulation of Software [19] A. Reibman and K. S. Trivedi, “Numerical Transient
Behavior Under Hardware Faults,” Proceedings of the
23rd International Symposium on Fault-Tolerant
Computing, June 1993, pp. 218-227.

[5] J. Gray, “A Census of Tandem System Availability
Between 1985 and 1990,” IEEE Transactions on
Reliability, Vol. 39, No. 4, Oct. 1990, pp. 409-418.

[7] M. C. Hsueh and R. K. Iyer, “Performability Modeling
Based on Real Data: A Case Study,” IEEE Transactions
on Computers, Vol. 37, No. 4, April 1988, pp. 478-484.

[8] R. K. Iyer and D. J. Rossetti, “Effect of System Workload
on Operating System Reliability: A Study on IBM 3081,”
IEEE Transactions on Software Engineering, Vol. 11, No.
12, Dec. 1985, pp. 1438-1448.

[9] R. K. Iyer and D. Tang, “Experimental Analysis of
Computer System Dependability,” Fault-Tolerant
Computer System Design, D. K. Pradhan (Ed.), Prentice
Hall PTR, Upper Saddle River, NJ, 1996, pp. 282-392.

[10] D. Kececioglu, Reliability and Life Testing Handbook,
Vol. 1 & 2, PTR Prentice Hall, Englewood Cliffs, NJ,
1993.

[11] J. C. Laprie, “Dependability Evaluation of Software
Systems in Operation,” IEEE Transactions on Software
Engineering, Vol. 10, Nov. 1984, pp. 701-714.

[12] J. C. Laprie, “Dependable Computing and Fault
Tolerance: Concepts and Terminology,” Proceedings of
the 15 International Symposium on Fault-Tolerantth

Computing, June 1985, pp. 2-11.

[13] J. C. Laprie, “Dependable Computing: Concepts, Limits,
Challenges,” Special Issue of the 25 Internationalth

Symposium on Fault-Tolerant Computing, June 1995, pp.
42-54.

[14] I. Lee, D. Tang, R. K. Iyer and M. Hsueh, “Measurement-
Based Evaluation of Operating System Fault Tolerance,”
IEEE Transactions on Reliability, Vol. 42, No. 2, June
1993, pp. 238-249.

[15] I. Lee and R. K. Iyer, “Software Dependability in the
Tandem GUARDIAN System,” IEEE Transactions on
Software Engineering, Vol. 21, No. 5, May 1995, pp. 455-
467.

[16] J. D. Musa, A. Iannino and K. Okumoto, Software
Reliability: Measurement, Prediction, Application,
McGraw-Hill Book Company, 1987.

[17] P. Nagle and J. A. Skrivan, Software Reliability:
Repetitive Run Experimentation and Modeling, NASA
CR-165836, Feb. 1982.

[18] M. Neil, B. Littlewood and N. Fenton, “Applying
Bayesian Belief Networks to System Dependability
Assessment,” Proceedings of Safety Critical Systems Club
Symposium, Springer-Verlag, Feb 1996.

Analysis of Markov Models,” Computational Operations
Research, Vol. 15, No. 1, 1988, pp. 19-36.

[20] R. A. Sahner, K. S. Trivedi and A. Puliafito, Performance
and Reliability Analysis of Computer Systems: An
Experimental-Based Approach Using the SHARPE
Software Package, Kluwer Academic Publishers, 1996.

[21] R. K. Scott, J. W. Gault and D. F. McAllister, “Fault-
Tolerant Software Reliability Modeling,” IEEE
Transactions on Software Engineering, Vol. 13, May
1987, pp. 582-592.

[22] D. P. Siewiorek and R. W. Swarz, Reliable Computer
Systems: Design and Evaluation, Digital Press, Bedford,
Mass., 1992.

[23] D. Tang and M. Hecht, “Evaluation of Software
Dependability Based on Stability Test Data,” Proceedings
of the 25th International Symposium on Fault-Tolerant
Computing, June 1995, pp. 434-443.

[24] D. Tang, M. Hecht, H. Hecht, and R. Brill,
“Measurement-Based Dependability Evaluation for
Safety-Grade Digital Systems,” Proceedings of the 1996
American Nuclear Society International Topical Meeting
on Nuclear Plant Instrumentation, Control and Human-
Machine Interface Technologies, May 1996, pp. 535-542.

[25] D. Tang, M. Hecht, J. Handal and L. Czekalski,
“MEADEP and Its Applications in Evaluating
Dependability for Air Traffic Control Systems,”
Proceedings of the 1998 Annual Reliability and
Maintainability Symposium, Jan. 1998, pp. 195-201.

[26] R. C. Tauworthe and M. R. Lyu, “Software Reliability
Simulation,” Chapter 16 of Handbook of Software
Reliability Engineering, M. R. Lyu, Editor, McGraw-Hill,
New York, NY, 1996.

[27] K. S. Trivedi, Probability & Statistics with Reliability,
Queuing, and Computer Science Applications, Prentice-
Hall, Englewood Cliffs, NJ, 1982.

[28] TVA Letter to NRC Dated May 10, 1990, Sequoyah
Nuclear Plant — Eagle 21 Functional Upgrade
Commitments, NRC Publication Document Room,
Accession Number 910715001.

[29] EAGLE 21 Technical Description, Westinghouse Electric
Corporation, Process Control Division, Pittsburgh, PA,
Jan. 1991.

