
/awareness/newsletters/listing.shtml/awareness/newsletters/listing.shtml

How Reliable are Requirements for Reliable
Software?
by Herbert Hecht and Myron Hecht, SoHaR Inc.

Introduction
Missing, inaccurate or incomplete requirements
lead to errors in software development and
usually also prevent these errors from being
detected during the testing phase. Functional
testing is based on the requirements; a missing or
inaccurate one will not be detected. Structural
testing is based on the developed code; an
unstated requirement is unlikely to be
implemented and will not be detected.
Operational failures due to omissions or
inaccuracies cause major economic losses or
even casualties, and corrective measures are far
more costly than they would be if the defect had
been caught earlier. A distinguishing feature of
reliable software is that it contains fault
tolerance provisions, such as alternative exits
when the assertions fail, roll-back and re-try,
recovery blocks, or multi-version programming.
In most cases these provisions prevent or
attenuate the effect of hardware and software
failures that would have occurred in their
absence, but there have also been incidents
where the fault tolerance objectives have not
been achieved and the reasons for the failure
have usually included missing or ill-formulated
requirements.

In the body of this paper we first describe what is
missing in requirements, then why it is missing,
and after that we explore corrective measures
and test strategies for verification of reliable
software.

What is Missing in
Requirements for Reliable
Software ?
Difficulties in formulating requirements for
reliable software frequently arise from inability
to identify

 . all sequences that invoke fault tolerance
provisions and

a. future operational environments. We
discuss these in turn.

An analysis of failures in a telephone switching
system paper notes that

 . the largest cause category (44% of
failures) comprised combination
hardware/software faults. In most cases
it was the inability of the software to
recover from hardware faults that it was
intended to protect against, and

a. that the faults leading to the most severe
consequences "were introduced during
the specification period and are
therefore difficult to solve." 1 Similarly,
a GAO report on serious problems in
ten computer-based systems traces these
to failure to implement "a process for
disciplined, consistent procedures for
software requirements management,
quality assurance, configuration
management, and project tracking. "2
Requirements management is the key
since all the other functions depend on
it.

The reasons for the deficiencies in requirements
include disbelief that more than one failure can
occur during an operating interval, or neglecting
the possibility that a single event (e. g., a short
power interruption) can trigger several fault
responses in the system is frequently overlooked.
Even where requirements for fault tolerance
provisions are explicit, the designers may
misinterpret them unless a specific review or
consultation process is provided. This is seen in
an experiment sponsored by NASA to
investigate the independence of fault responses
in redundant software.3 The specifications for the
program were very carefully prepared and then

independently validated to avoid introduction of
common causes of failure. Each programming
team submitted their program only after they had
tested it and were satisfied that it was correct.
Then all 20 versions were subjected to an
intensive third party test program. The objective
of the individual programs was to furnish an
orthogonal acceleration vector from the output of
a non-orthogonal array of six accelerometers
after up to three arbitrary accelerometers had
failed. Table 1 shows the results of the third
party test runs in which an accelerometer failure
was simulated.

Table 1. Tests of Redundancy Management Software

No. of Prior
Anomalies

Observed
Failures

Total
Tests

Failure
Fraction

0 1,268 134,135 0.01

1 12,921 101,151 0.13

2 83,022 143,509 0.58

The number of rare conditions (anomalies)
responsible for failure is one more than the entry
in the first column (because a new accelerometer
anomaly was simulated during the test run, and it
is assumed that the software failure occurred in
response to the new anomaly). In slightly over
99% of all tests a single rare event
(accelerometer anomaly) could be handled as
indicated by the first row of the table. Two rare
events produced an increase in the failure
fraction by more than a factor of ten, and the
majority of test cases involving three rare events
resulted in failure. Although the statement of the
problem clearly required that up to three
anomalies had to be tolerated, the software
developers had difficulties in providing for the
required response to more than a single
malfunction. Also, the developers' own test
scenarios did not sufficiently explore multiple
failure conditions.

The second difficult area for requirements is the
response to changes in the system environment.
Computers and operating systems are
periodically updated and new models of sensors
or actuators may be introduced. The application
program may be reviewed and tested for proper
operation in the new environment, but safeguards
to prevent use of the software in the wrong
configuration are frequently missing. Thus, if a

problem develops with the most recent release of
the operating system and it is decided to revert to
the previous one, the need to go back to the old
application software may be overlooked. Several
crashes of important programs have been
attributed to such lapses in configuration
management. Providing a version check as part
of the initialization should be a mandatory
requirement but apparently it is not.

Why Requirements are
Incomplete
The primary cause of incomplete requirements is
the waterfall model that assumes that
requirements can be completely formulated at
the outset for systems of any scale. That, coupled
with a procurement system that discourages
continuous updating of user needs, casts in
concrete requirements that were developed under
severe time constraints and many months,
possibly years, before the development started.

In a large organization, and particularly in
branches of the government, at least three
entities participate in the formulation of
requirements: the user, the funding agency, and
the office in charge of the development. The first
step in the process is a statement of operational
needs generated by the user. This is typically

forwarded to the developer for obtaining a
budgetary estimate, and then the need and the
estimate are submitted for funding. In favorable
circumstances the funding will be approved, but
usually after considerable delay. Once approval
has been obtained, the emphasis is on avoiding
further delay. Previously generated requirements
are dusted off and only cursorily reviewed to
determine that they really represent current
needs.

Finally, we want to reiterate the difficulty of
conceptualizing and understanding the effect of
multiple failures that was already mentioned in
the preceding section. The resource-constrained
environment of a typical software development
provides a further obstacle to evaluating whether
the requirements fully cover all required
combinations of failures.

Corrective Measures
In the two preceding sections we have seen that
requirements for highly reliable systems may be

incomplete, particularly with regard to the
reliability related features. Missing or incomplete
requirements are not likely to be identified by
either functional or structural testing and thus
tend to persist into the OPEVAL and usage
phases, sometimes constituting safety hazards
and always imposing a very high cost for
correction in the late lifecycle phases.

Since we have identified the waterfall model as a
root cause of incomplete requirements it is
appropriate to mention techniques that recognize
that requirements evolve during development.
Among these are the spiral development model4
and rapid prototyping.5 Narrower techniques are
summarized in Table 2.

As a baseline (against which corrective measures
will be evaluated) let us assume that the software
development proceeds in a disciplined manner,
and that applicable techniques from the
requirements engineering discipline have been
used.6

The first two entries in the above table address
primarily logical gaps or inconsistencies. The
three test methods that are grouped together in
the next row go beyond the traditional
requirements format and recognize the need for
more user interaction with the development.
Random testing has been shown to provide high
coverage in the cited reference, but it needs an
oracle to identify the correct test outcome where
that is not obvious.

While user involvement during development will
help, the typical task-oriented user does not
recognize deficiencies in exception handling or

the need for automated configuration monitoring.
Requirements elicitation improves the
effectiveness of user interaction but must be
directed to areas where deficiencies are likely to
exist. This requires knowledge of past failures
and better utilization of existing databases for
identifying the role of incomplete requirements.
Thus collection and analysis of failure data
emerges as the key to long term improvements
for formulation of reliable requirements for
reliable systems.

Table 2. Techniques for Avoidance of Incomplete Requirements

Technique Benefits

Formal Methods 7 Can detect some inconsistencies and instances of incomplete requirements

Condition Tables 8 Very effective detection of incomplete requirements

Scenario-Based
Testing 9
Thread-Based
Testing 10
Task-Based Testing

11

All of these elements introduced into earlier test phases, effectiveness depends on
the skill of the implementers

Random Testing 12 Multiple RN generators for groupings of exception conditions can detect missing
requirements for combination events.

About the Authors Author Contact Information
Herbert Hecht founded SoHaR in 1978 and is currently
Chairman of the Board. Previously he held engineering
management positions at The Aerospace Corporation and at
Honeywell Flight Systems. His chief professional interest is the
reliability and availability of computer based systems. He has
served as a Governor of the IEEE Computer Society and as a
visitor in Computer Engineering for ABET. Recently he has
been on the National Research Council Committee that
evaluated long term use of the International Space Station.

He earned BEE and MEE degrees from City College and
Polytechnic University of New York, respectively, and received
a Ph. D. in Engineering from UCLA.

Myron Hecht is co-founder and President of SoHaR
Incorporated. His activities in basic research and development
at SoHaR have resulted in new architectures for real time
distributed systems, methodologies for the development and
verification of fault tolerant software, and design techniques for
highly reliable distributed systems for process control and C3I.
In prior employment he developed and verified computer codes
for nuclear power plants at SAIC and Westinghouse.

He has an M.B.A, an M.S. in Nuclear Engineering, and a B.S.
in Chemistry, all from UCLA. He is a member of the IEEE and
has served its standards committees. He has authored or co-
authored more than 60 refereed publications in the fields of
software quality and metrics, computer dependability,
maintenance resource allocation, air traffic control, and nuclear
engineering.

Herbert Hecht
Chairman of the Board
SoHaR Incorporated

8421 Wilshire Blvd. #201
Beverly Hills CA 90211

Voice: (323) 653-4717 x110
Fax: (323) 653-3624

herb@sohar.com
www.sohar.com

Myron Hecht
President

SoHaR Incorporated
8421 Wilshire Blvd. #201
Beverly Hills CA 90211
Voice: (323) 653-4717
Fax: (323) 653-3624
myron@sohar.com

www.sohar.com

References
1. K. Kanoun and T. Sabourin, "Software Dependability of a Telephone Switching System", Digest,

Fault Tolerant Computing Symposium-17, pp. 236-241, Pittsburgh, Pa., June 1987

2. General Accounting Office, High Risk Series: Information Management and Technology,
GAO/HR97-9, Feb 97

3. D. E. Eckhardt, A. K. Caglayan, J. C. Knight, et al., "An Experimental Evaluation of Software
Redundancy as a Strategy for Improving Reliability", IEEE Trans. Software Engineering, vol 17
no 7, July 1991, pp. 692 - 702

4. B. Boehm, "A Spiral Model of Software Development and Enhancement", IEEE Computer, May
1988, p.61

5. R. Balzer, N. Goldman and D. Wile, "Operational Specification as the Basis for Rapid
Prototyping", ACM Software Engineering Notes, Dec 82, pp. 3 - 16

6. Mylopoulos, J (ed.), Requirements Engineering, IEEE Computer Society, 1997

7. Susan Gerhart, Dan Craigen and Ted Ralston, "Observations on Industrial Practice Using Formal
Methods", Proc. 15th International Conference on Software Engineering, IEEE Computer Society
Press, Baltimore, May 1993, pp. 24 - 33

8. D. L. Parnas, G. J. K. Asmis, and J. Madey, "Assessment of Safety-Critical Software", Proc. Ninth
Annual Software Reliability Symposium, Colorado Springs CO, May 1991

9. Jarke, M., and R. Kurki-Suonio, eds. Special Issue on Scenario Management, IEEE Transactions
on Software Engineering, vol 24 no 12, December 1998

10. Borgia, W. M., and N. J. Hrdlick,, "Thread-Based Integration Testing", Software Tech News, vol 3
no 3, (DACS), January 2000

11. Telford, D. G., "Task-Based Software Testing", Software Tech News, vol 3 no 3, (DACS), January
2000

12. P. G. Bishop, ed., Dependability of Critical Computer Systems 3 - Techniques Directory, Elsevier
Applied Science, ISBN 1-85166-544-7, 1990

