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Introduction 
The importance of software as a contributor (if not 

the actual cause) of catastrophic events has been well 
documented [Leveson95]. Moreover, as software is 
integrated into safety critical systems, the same 
quantitative reliability requirements which have been 
previously allocated to hardware are now being allocated 
to both hardware and software. For example, both U.S. 
Federal Aviation Regulations (FARs) and International 
Joint Aviation Regulations impose maximum acceptable 
probabilities for failures of systems in passenger transport 
aircraft.  Part 10 of the U.S. Code of Federal Regulations 
also establishes maximum acceptable probabilities for 
radioactive releases from nuclear power plants.  When 
these standards were written, analog control systems were 

the dominant technology, and there was an accepted 
methodology for reliability prediction. Now digital (i.e., 
software-based) systems are replacing analog controls, but 
the old standards remain in force. The need for updating 
the standards and methodology extends to unregulated 
fields (e.g., computer-based automobile electronics) 
where  there is economic motivation to being able to 
quantify the expected failure behavior. 
 The greatest need is for methodologies that can 
demonstrate that quantitative requirements are being met. 
More detailed quantitative characterizations are also 
needed to identify system bottlenecks and provide insight 
for decision making. An overview of the principal 
methodologies is presented in Table 1, and individual 
descriptions of each methodology folow. 

Table 1.  Comparison of Reliability Assessment Techniques 
 

Technique Life Cycle 
Phase 

Typical 
Measure 

Advantages Limitations Predictive 
Power 

Fault density All (1) Faults/KSLOC Reference data 
available 

Must assume 
encounter rate 

Low 

Reliability 
growth 

Test Failures/execu- 
tion hour 

Some reference 
data available, 
objective 
measurement 

Requires obser-
vation of multi- 
ple failures 

Medium 

Structured 
Dependability 

Test & 
operation 

Failures/execu- 
tion hour for 
each segment 

Models soft-
ware structure, 
objective meas. 

Few reference 
data, requires 
observations 

Medium /high 

Rare events Operation Failures/opera-
ting year 

Applicable to 
very high inte- 
grity systems 

No reference 
data, requires 
observations 

Potentially 
high 

(1) Prior to the coding phase, a measure of deficiencies per estimated KSLOC can be employed 

 



Fault Density Model 
 The fundamental assumption behind fault density-
based prediction models is that as the number of software 
coding defects (faults) increases, reliability decreases. The 
U.S. Air Force Rome Laboratory sponsored research into 
developing predictions of fault density (i.e., number of 
coding defects per thousand lines of source code) which 
they could then transform into reliability measures, such 
as failure rates [Friedman92].  The predictions of fault 
density are based on the characteristics of the application, 
development environment, extent of reuse and other 
factors.  This study and other sources contain data on 
expected fault density which currently ranges from 1 to 5 
faults per thousand source lines of code (KSLOC). The 
translation of fault density to failure rate requires 
assumptions about the probability of encountering a fault 
during execution.  This probability can vary widely, 
depending on the location and nature of the fault.  The 
empirical data on this probability that are currently 
available do not support very accurate predictions of the 
failure rate. 

Software Reliability Growth Models 
 Software reliability growth models use measured 
trends of failure rates (or change in intervals between 
failures) and extrapolate them to future operation. In most 
cases, they evaluate the reduction in failure frequency 
during successive developmental test intervals to estimate 
the software reliability at the conclusion of the test (and 
sometimes into operational deployment). 
 Reliability growth models have been an active area of 
research since the early 1970s [Farr93]. Examples are the 
Schneidewind model, the generalized exponential model, 
the Musa/Okumoto Logarithmic Poisson model, and the 
Littlewood/Verrall model [ANSI92].  
 Figure 1 shows an example of such a model. The 
software is executed over a certain time interval, 
represented as t�n, until a failure occurs.  The time 
between failures defines a hazard rate1.   It is expected 

                                                           
1 Loosely,  the hazard rate is an indirect measure of 
unreliability (it is equivalent to the failure rate for the 
exponential distribution).  More rigorously, the hazard 

(but not required in this particular model) that overall, the 
hazard rate will decrease over time, but that there are 
discontinuities as each failure occurs.  However, as the 
program runs for more time, there is increasing 
confidence in the reliability of the program.  Applications 
of these models have all been demonstrated using real 
data from software with typical failure rates of 10 -1 to 10-3 
per hour [Abdel-Ghaly86, Musa87].  
. 

 
Figure 1.  Typical shape of a hazard rate (a metric 
related to unreliability) for the Littlewood-Verrall 
reliability model [Musa87] 

 Because of the very low failure rate required for life-
critical software, reliability growth models and traditional 
testing techniques are not suitable [Butler93]. For 
example, it would take 108 to 1010 hours (thousands of 
years) of testing to demonstrate a failure rate of 10-7 to 10-

9 per hour assuming one copy of software would be tested 
and one failure would be observed [Butler93]. Even if 10 
copies of the software are tested concurrently, it would 
still take hundreds of years. The study also cited 
comments of other experts in the field on this issue, 
including the following: 
 

                                                                                              
rate is defined as the conditional failure density given that 
no previous failures have occurred. 



�Clearly, the reliability growth techniques are useless 
in the face of such ultra-high requirements. It is easy 
to see that, even in the unlikely event that the system 
had achieved such a reliability, we could not assure 
ourselves of that achievement in an acceptable time. 
[Littlewood93]� 

 
Another limitation of reliability growth models is their 
lack of ability to model software structure. Reliability 
growth models treat the software as a black box and form 
a single expression for its reliability. Critical software 
systems include fault tolerance mechanisms, such as error 
detection and handling, redundancy management, and 
back-up tasks.  As such, the reliability of the whole 
software system cannot be simply quantified by the 
number of failures observed at the component level.  For 
example, a transient task failure may be covered by the 
fault tolerance provisions and may not affect critical 
functions.  This scenario has been verified by several 
studies [Lee93, Tang95] which showed that 80 to 95 
percent of software failures in real-time fault-tolerant 
systems are recoverable by redundant processes.  In such 
a case, reliability growth models do not provide 
meaningful answers, and structured dependability models 
must be used. 

Structured Dependability Models 
 An alternative approach uses structured 
measurements, similar to the established hardware 
practice. In this technique, application software tasks, 
operating system kernels or executives, and hardware 
components are regarded as equivalent elements in a 
system.  The operating times, failure rates, correlated 
failure probability, recovery times, and recovery 
probabilities of  any of these elements can be measured in 
reliability tests. 
 Reliability and availability are then estimated by 
models of the system structure, using measurement-based 
parameters for each component [Tang95]. Statistical 
estimation of reliability and availability parameters and 
reliability modeling based on these parameters has been a 
research topic in computer engineering for 15 years 
[Iyer93]. These analyses are based on operational logs 

and failure data.    
 Dependability models have been used to evaluate 
operational software based on failure data collected from 
commercial computer operating systems for about 10 
years [Hsueh87, Tang92, Lee93]. The methodology has 
been extended to evaluate availability for air traffic 
control software systems in the late testing phase 
[Tang95] and most recently also to the early operational 
phase at multiple sites. 
 In our experience, three model structures have been 
found useful in measurement-based dependability 
evaluation: the reliability block diagram, the k-out-of-n 
model, and the Markov chain. Both reliability diagrams 
and k-out-of-n models are combinatorial models and 
typically assume failure independence among modeled 
components. Markov chains are stochastic models which 
can incorporate interactions among components and 
failure dependence in the model.  
 However, the current practice of measurement-based 
evaluation for individual software systems (with the 
number of installations <100) is still limited to failure 
rates of 10 -2 to 10-5 per hour and an availability of three to 
five 9's (0.999 to 0.99999). For example, the newly 
developed FAA Voice Switching and Control System 
(VSCS) is being installed in 21 major U.S. air traffic 
control centers. The system availability (dominated by 
software) was evaluated to have five 9's as of March 31, 
1996.  If no major failure occurs in the future, it would 
take 15 years of normal operation of the 21 systems to 
demonstrate an availability of the required seven 9's at the 
80% confidence level. 

In the process of collecting and analyzing such data, 
additional studies can be undertaken for more detailed 
examinations of underlying causes.  For example, 
analyses of workload and failure data collected from IBM 
mainframes [Butner80] and DEC minicomputers 
[Castillo81] revealed that the average system failure rate 
is strongly correlated with the average workload on the 
system. Recent studies of data from DEC [Tang92] and 
Tandem [Lee93] systems showed that correlated failures 
across processors are significant in multicomputers, and 
their impact on dependability is significant.   

 
The underlying assumption in these measurement-



based approaches is that the fundamental failure 
mechanisms are triggered stochastically, i.e., are non-
deterministic (�Heisenbugs�).  However, there is a class 
of failures in which the software runs to completion but 
produces an unacceptable output.  For example, an 
electronic speed control on a turbine may in fact not shut 
down the device in an over-speed condition even though 
there was no crash, hang, stop, or delay failure. This 
deterministic failure condition may be traced to a logic 
fault in the code or an incorrect set of parameters (e.g., the 
RPM threshold for that particular turbine under the 
specified set of pressures and temperatures).  However, 
the root cause of the failure may in fact lie much deeper, 
i.e., defects in the system  requirements or software 
requirements. 

The techniques and methodologies for estimating the 
probabilities for these deterministic incorrect response 
failures are very immature.  It is tempting to �wish them 
away� by positing that an adequate V&V (verification and 
validation) or integration testing program should uncover 
them.  However, resources are finite, and it is rarely 
feasible to provide sufficient time or money to perform 
the level of testing needed to uncover all such failures, 
even in systems designed for high dependability. From a 
practical perspective, when estimating software failure 
rates, one should look not only at failures that cause 
losses or delays of system services (e.g., crash, hang, 
stop) but also incorrect response failures.  If there are 
incorrect responses at the final stages of testing or 
integration, or in initial operation, then reliability 
predictions made exclusively on the basis of stochastic 
failures may not be valid. 

Obtaining adequate data from which to assess 
reliability and availability is critical to any measurement-
based methodology.  This obvious principle can be 
difficult to implement in practice for dependability 
assessments because of the constraints of an expensive 
testing program or impending project deadlines.  
Adequate data means monitoring and recording events of 
interest such as failures and recoveries of components, as 
well as performance parameters of the target system while 
it is operating under representative workloads.  It also 
means collecting data on failure modes so that an 
assessment of the importance of deterministic failures can 

be made.  The events and parameters to be collected 
should be representative of the system operation and 
meaningful for the assessment of the system. 
Measurements should be made continuously for a 
sufficient period to yield statistically significant data. 
Operating logs should include information about the 
location, time and type of the error, the system state at the 
time of failure or abnormal operation, and error recovery 
(e.g., retry) information where applicable.  

Assessment by Rare Events Technique 
As previously discussed, none of the techniques 

described above can furnish a credible direct assessment 
for failure rates lower than 10-6 per hour. Under favorable 
circumstances, the structured dependability approach may 
support the conclusion that such requirements are met by 
two or more independent versions running under a highly 
reliable selection or voting scheme, and this is indeed the 
way adopted by many exacting applications.  It is an 
expensive solution, because in addition to the multiple 
software implementations it requires the development and 
very extensive testing of selection mechanisms. Further, 
multi-version software tends to degrade the computational 
performance (because of the need to wait for the slowest 
version to complete execution and related issues), and the 
independence of the versions cannot be taken for granted 
(because they implement a common set of requirements ). 
 Therefore, there is ample motivation to investigate other 
assessment techniques. 

The basic premise of  the rare events approach is 
that well-tested software does not fail under routine input 
conditions, which means that failures must be triggered by 
unusual input data or computer states.  This assumption is 
validated by a number of investigations that are 
summarized elsewhere [Hecht94]. Late phase testing will 
usually subject the program to test cases that emphasize 
these rare conditions, and this permits assessment of the 
failure probability by the likelihood of encountering the 
rare conditions that triggered the failure rather than by test 
time.  As an example, consider a program that failed twice 
during the last 1,000 hours of test.  The first failure 
occurred on restart after a simulated power interruption, 
while at the same time one of the input signals faulted to 



zero (sensor fault).  The second failure occurred when one 
out of three inputs faulted to high and another one to low. 
 Is the failure rate of this program 2×10-3 per hour as 
computed from the test time?  Most observers would 
disagree with such an assessment and will find it more 
reasonable to take into account the occurrence rate of the 
triggering events in the environment in which this 
program will operate.  Assume that power interruptions 
normally occur only once a year, and sensor failures to 
zero are expected to occur only once every two years.  
The combined probability of the joint event (assuming the 
individual triggers to be independent), is therefore well 
over 10-7 per hour.  The second test case that triggered a 
failure (one sensor high and one low), has an even lower 
probability.  After the software has been modified so that 
it will not fail again due to these triggers, its failure 
probability will be much lower than that computed from 
the test time. 

A quantitative assessment will consider the total 
number of test cases that had been used and the 
probability of the natural occurrence of the simulated 
conditions.  To illustrate the basics of the quantitative 
assessment, assume that during the 1,000 hours of test 
there were 10,000 test cases that simulated conditions that 
are expected to arise more frequently than once per   
10,000,000 hours and 1,000 test cases simulating 
conditions that are expected to occur less frequently.  
Since the only failures observed were due to the second 
category, and since there was a ten-fold greater 
opportunity for failures under the first category, it can be 
reasoned that the failure rate in the natural environment is 
expected to be not more than 10-7 per hour.  The 
mathematical formulation of this approach is based on the 
probability of drawing black and white balls from an urn 
[Hecht96]. 

Conclusions 
Reliability assessments based on fault density and 

reliability growth models support planning and 
comparative evaluations but are usually not sufficiently 
validated to be a credible basis for stating that a software 
product has attained a required reliability, particularly 
when the required reliability is high.  Structured 

dependability models can furnish estimates that are more 
precise and that also identify the elements where 
reliability improvement will provide the greatest benefit. 
They are well suited for designing and maintaining highly 
dependable computer systems intended for flight control, 
ground transportation, air traffic control, and nuclear 
power plant safety functions. 

 Except under unusually favorable circumstances, 
none of these methods can currently assess whether a 
software product meets requirements for failure rates of 
less than 10-6 per hour.  The rare events approach, 
described in the preceding section, has the potential for 
being useful for applications that demand the highest 
dependability, but it is the least validated of the 
methodologies discussed here. Because of the constantly 
increasing use of software based systems in critical 
applications, further research into software reliability 
assessment is urgently needed. 
 
References 
 
[Abdel-Ghaly86] A. A. Abdel-Ghaly, P. Y. Chan and B. 
Littlewood, �Evaluation of Competing Software Reliability 
Predictions�, IEEE Transactions on Software Engineering, vol 
SE-12 no. 9, September 1986, pp. 950-967 
 
[ANSI92]  �American National Standard, Recommended 
Practice for Software Reliability�, American National Standards 
Institute, ANSI/AIAA R-013-1992 
 
[Butler93] R. W. Butler and G. B. Finelli, �The Infeasibility of 
Quantifying the Reliability of Life-Critical Real-Time 
Software�, IEEE Transactions on Software Engineering, vol 
SE19 no. 1, pp. 3 - 12, January 1993 
 
[Butner80]  S.E. Butner and R.K. Iyer, "A Statistical Study of 
Reliability and System Load at SLAC," Proc. 10th Int. Symp. 
Fault-Tolerant Computing,   pp. 207-209, Oct. 1980. 
 
[Castillo81], X. Castillo and D.P. Siewiorek, "Workload, 
Performance, and Reliability of Digital Computer Systems," 
Proc. 11th Int. Symp. Fault-Tolerant Computing, pp. 84-89, 
July 1981. 
 
[Farr93] W. H. Farr and O. Smith, �Statistical Modeling and 
Estimation Functions forSoftware (SMERFS) � Users Guide� 
NSWCDD TR84-371, Revision 3, September 1993 
 
[Friedman 92] Michael Friedman, �Methodology for Software 
Reliability Prediction and Assessment� Report RL-TR-92-52, 
Rome Laboratory 1992 (2 volumes) 

 



[Hecht94] Herbert Hecht and Patrick Crane, "Rare 
Conditions and their Effect on Software Failures" 
Proceedings of the 1994 Reliability and Maintainability 
Symposium, pp. 334 - 337, January 1994 

 
 [Hecht96] Herbert Hecht and Myron Hecht, �Quality 
Assurance and Testing for Safety Systems� Proc. 
CADTED, Beijing, July 1996 
 
[Hsueh87] M. C. Hsueh and R. K. Iyer, �A Measurement-Based 
Model of Software Reliability in a Production Environment� 
Proceedings of the 11th Annual Computer Software and 
Applications Conference, pp. 354-360, October 1987 
 
 
[Iyer93] R.K. Iyer and D. Tang, �Experimental Analysis of 
Computer System Dependability� Technical Report 
CRHC-93-15, Center for Reliable and High-Performance 
Computing, University of Illinois at Urbana-Champaign, July 
1993. 
 
[Lee93] I. Lee, D. Tang, R.K. Iyer, and M.C. Hsueh, 
"Measurement-Based Evaluation of Operating System Fault 
Tolerance," IIEEE Transactions on Reliability,  pp. 238-249, 
June 1993. 
 
[Leveson95]  Nancy G. Leveson, Safeware, Addison Wesley, 
Reading, Mass., 1995 
 
[Tang92]  D. Tang and R.K. Iyer, "Analysis and Modeling of 
Correlated Failures in Multicomputer Systems," IIEEE Trans. 
Computers  Vol. 41, No. 5, pp. 567-577, May 1992. 
 
[Tang95] D. Tang and M. Hecht, �Evaluation of Software 
Dependability Based on Stability Test Data� Proc. 11th 
Int. Symp. Fault-Tolerant Computing, Pasadena, 
California, June 1995 
 


