
Issues in NASA Program and Project Management, Washington, DC, 1996

SDASSMT Software Reliability Assessment �
Myth and Reality

 Myron Hecht, Dong Tang, and Herbert Hecht

Introduction
The importance of software as a contributor (if not

the actual cause) of catastrophic events has been well
documented [Leveson95]. Moreover, as software is
integrated into safety critical systems, the same
quantitative reliability requirements which have been
previously allocated to hardware are now being allocated
to both hardware and software. For example, both U.S.
Federal Aviation Regulations (FARs) and International
Joint Aviation Regulations impose maximum acceptable
probabilities for failures of systems in passenger transport
aircraft. Part 10 of the U.S. Code of Federal Regulations
also establishes maximum acceptable probabilities for
radioactive releases from nuclear power plants. When
these standards were written, analog control systems were

the dominant technology, and there was an accepted
methodology for reliability prediction. Now digital (i.e.,
software-based) systems are replacing analog controls, but
the old standards remain in force. The need for updating
the standards and methodology extends to unregulated
fields (e.g., computer-based automobile electronics)
where there is economic motivation to being able to
quantify the expected failure behavior.
 The greatest need is for methodologies that can
demonstrate that quantitative requirements are being met.
More detailed quantitative characterizations are also
needed to identify system bottlenecks and provide insight
for decision making. An overview of the principal
methodologies is presented in Table 1, and individual
descriptions of each methodology folow.

Table 1. Comparison of Reliability Assessment Techniques

Technique Life Cycle
Phase

Typical
Measure

Advantages Limitations Predictive
Power

Fault density All (1) Faults/KSLOC Reference data
available

Must assume
encounter rate

Low

Reliability
growth

Test Failures/execu-
tion hour

Some reference
data available,
objective
measurement

Requires obser-
vation of multi-
ple failures

Medium

Structured
Dependability

Test &
operation

Failures/execu-
tion hour for
each segment

Models soft-
ware structure,
objective meas.

Few reference
data, requires
observations

Medium /high

Rare events Operation Failures/opera-
ting year

Applicable to
very high inte-
grity systems

No reference
data, requires
observations

Potentially
high

(1) Prior to the coding phase, a measure of deficiencies per estimated KSLOC can be employed

Fault Density Model
 The fundamental assumption behind fault density-
based prediction models is that as the number of software
coding defects (faults) increases, reliability decreases. The
U.S. Air Force Rome Laboratory sponsored research into
developing predictions of fault density (i.e., number of
coding defects per thousand lines of source code) which
they could then transform into reliability measures, such
as failure rates [Friedman92]. The predictions of fault
density are based on the characteristics of the application,
development environment, extent of reuse and other
factors. This study and other sources contain data on
expected fault density which currently ranges from 1 to 5
faults per thousand source lines of code (KSLOC). The
translation of fault density to failure rate requires
assumptions about the probability of encountering a fault
during execution. This probability can vary widely,
depending on the location and nature of the fault. The
empirical data on this probability that are currently
available do not support very accurate predictions of the
failure rate.

Software Reliability Growth Models
 Software reliability growth models use measured
trends of failure rates (or change in intervals between
failures) and extrapolate them to future operation. In most
cases, they evaluate the reduction in failure frequency
during successive developmental test intervals to estimate
the software reliability at the conclusion of the test (and
sometimes into operational deployment).
 Reliability growth models have been an active area of
research since the early 1970s [Farr93]. Examples are the
Schneidewind model, the generalized exponential model,
the Musa/Okumoto Logarithmic Poisson model, and the
Littlewood/Verrall model [ANSI92].
 Figure 1 shows an example of such a model. The
software is executed over a certain time interval,
represented as t�n, until a failure occurs. The time
between failures defines a hazard rate1. It is expected

1 Loosely, the hazard rate is an indirect measure of
unreliability (it is equivalent to the failure rate for the
exponential distribution). More rigorously, the hazard

(but not required in this particular model) that overall, the
hazard rate will decrease over time, but that there are
discontinuities as each failure occurs. However, as the
program runs for more time, there is increasing
confidence in the reliability of the program. Applications
of these models have all been demonstrated using real
data from software with typical failure rates of 10 -1 to 10-3
per hour [Abdel-Ghaly86, Musa87].
.

Figure 1. Typical shape of a hazard rate (a metric
related to unreliability) for the Littlewood-Verrall
reliability model [Musa87]

 Because of the very low failure rate required for life-
critical software, reliability growth models and traditional
testing techniques are not suitable [Butler93]. For
example, it would take 108 to 1010 hours (thousands of
years) of testing to demonstrate a failure rate of 10-7 to 10-

9 per hour assuming one copy of software would be tested
and one failure would be observed [Butler93]. Even if 10
copies of the software are tested concurrently, it would
still take hundreds of years. The study also cited
comments of other experts in the field on this issue,
including the following:

rate is defined as the conditional failure density given that
no previous failures have occurred.

�Clearly, the reliability growth techniques are useless
in the face of such ultra-high requirements. It is easy
to see that, even in the unlikely event that the system
had achieved such a reliability, we could not assure
ourselves of that achievement in an acceptable time.
[Littlewood93]�

Another limitation of reliability growth models is their
lack of ability to model software structure. Reliability
growth models treat the software as a black box and form
a single expression for its reliability. Critical software
systems include fault tolerance mechanisms, such as error
detection and handling, redundancy management, and
back-up tasks. As such, the reliability of the whole
software system cannot be simply quantified by the
number of failures observed at the component level. For
example, a transient task failure may be covered by the
fault tolerance provisions and may not affect critical
functions. This scenario has been verified by several
studies [Lee93, Tang95] which showed that 80 to 95
percent of software failures in real-time fault-tolerant
systems are recoverable by redundant processes. In such
a case, reliability growth models do not provide
meaningful answers, and structured dependability models
must be used.

Structured Dependability Models
 An alternative approach uses structured
measurements, similar to the established hardware
practice. In this technique, application software tasks,
operating system kernels or executives, and hardware
components are regarded as equivalent elements in a
system. The operating times, failure rates, correlated
failure probability, recovery times, and recovery
probabilities of any of these elements can be measured in
reliability tests.
 Reliability and availability are then estimated by
models of the system structure, using measurement-based
parameters for each component [Tang95]. Statistical
estimation of reliability and availability parameters and
reliability modeling based on these parameters has been a
research topic in computer engineering for 15 years
[Iyer93]. These analyses are based on operational logs

and failure data.
 Dependability models have been used to evaluate
operational software based on failure data collected from
commercial computer operating systems for about 10
years [Hsueh87, Tang92, Lee93]. The methodology has
been extended to evaluate availability for air traffic
control software systems in the late testing phase
[Tang95] and most recently also to the early operational
phase at multiple sites.
 In our experience, three model structures have been
found useful in measurement-based dependability
evaluation: the reliability block diagram, the k-out-of-n
model, and the Markov chain. Both reliability diagrams
and k-out-of-n models are combinatorial models and
typically assume failure independence among modeled
components. Markov chains are stochastic models which
can incorporate interactions among components and
failure dependence in the model.
 However, the current practice of measurement-based
evaluation for individual software systems (with the
number of installations <100) is still limited to failure
rates of 10 -2 to 10-5 per hour and an availability of three to
five 9's (0.999 to 0.99999). For example, the newly
developed FAA Voice Switching and Control System
(VSCS) is being installed in 21 major U.S. air traffic
control centers. The system availability (dominated by
software) was evaluated to have five 9's as of March 31,
1996. If no major failure occurs in the future, it would
take 15 years of normal operation of the 21 systems to
demonstrate an availability of the required seven 9's at the
80% confidence level.

In the process of collecting and analyzing such data,
additional studies can be undertaken for more detailed
examinations of underlying causes. For example,
analyses of workload and failure data collected from IBM
mainframes [Butner80] and DEC minicomputers
[Castillo81] revealed that the average system failure rate
is strongly correlated with the average workload on the
system. Recent studies of data from DEC [Tang92] and
Tandem [Lee93] systems showed that correlated failures
across processors are significant in multicomputers, and
their impact on dependability is significant.

The underlying assumption in these measurement-

based approaches is that the fundamental failure
mechanisms are triggered stochastically, i.e., are non-
deterministic (�Heisenbugs�). However, there is a class
of failures in which the software runs to completion but
produces an unacceptable output. For example, an
electronic speed control on a turbine may in fact not shut
down the device in an over-speed condition even though
there was no crash, hang, stop, or delay failure. This
deterministic failure condition may be traced to a logic
fault in the code or an incorrect set of parameters (e.g., the
RPM threshold for that particular turbine under the
specified set of pressures and temperatures). However,
the root cause of the failure may in fact lie much deeper,
i.e., defects in the system requirements or software
requirements.

The techniques and methodologies for estimating the
probabilities for these deterministic incorrect response
failures are very immature. It is tempting to �wish them
away� by positing that an adequate V&V (verification and
validation) or integration testing program should uncover
them. However, resources are finite, and it is rarely
feasible to provide sufficient time or money to perform
the level of testing needed to uncover all such failures,
even in systems designed for high dependability. From a
practical perspective, when estimating software failure
rates, one should look not only at failures that cause
losses or delays of system services (e.g., crash, hang,
stop) but also incorrect response failures. If there are
incorrect responses at the final stages of testing or
integration, or in initial operation, then reliability
predictions made exclusively on the basis of stochastic
failures may not be valid.

Obtaining adequate data from which to assess
reliability and availability is critical to any measurement-
based methodology. This obvious principle can be
difficult to implement in practice for dependability
assessments because of the constraints of an expensive
testing program or impending project deadlines.
Adequate data means monitoring and recording events of
interest such as failures and recoveries of components, as
well as performance parameters of the target system while
it is operating under representative workloads. It also
means collecting data on failure modes so that an
assessment of the importance of deterministic failures can

be made. The events and parameters to be collected
should be representative of the system operation and
meaningful for the assessment of the system.
Measurements should be made continuously for a
sufficient period to yield statistically significant data.
Operating logs should include information about the
location, time and type of the error, the system state at the
time of failure or abnormal operation, and error recovery
(e.g., retry) information where applicable.

Assessment by Rare Events Technique
As previously discussed, none of the techniques

described above can furnish a credible direct assessment
for failure rates lower than 10-6 per hour. Under favorable
circumstances, the structured dependability approach may
support the conclusion that such requirements are met by
two or more independent versions running under a highly
reliable selection or voting scheme, and this is indeed the
way adopted by many exacting applications. It is an
expensive solution, because in addition to the multiple
software implementations it requires the development and
very extensive testing of selection mechanisms. Further,
multi-version software tends to degrade the computational
performance (because of the need to wait for the slowest
version to complete execution and related issues), and the
independence of the versions cannot be taken for granted
(because they implement a common set of requirements).
 Therefore, there is ample motivation to investigate other
assessment techniques.

The basic premise of the rare events approach is
that well-tested software does not fail under routine input
conditions, which means that failures must be triggered by
unusual input data or computer states. This assumption is
validated by a number of investigations that are
summarized elsewhere [Hecht94]. Late phase testing will
usually subject the program to test cases that emphasize
these rare conditions, and this permits assessment of the
failure probability by the likelihood of encountering the
rare conditions that triggered the failure rather than by test
time. As an example, consider a program that failed twice
during the last 1,000 hours of test. The first failure
occurred on restart after a simulated power interruption,
while at the same time one of the input signals faulted to

zero (sensor fault). The second failure occurred when one
out of three inputs faulted to high and another one to low.
 Is the failure rate of this program 2×10-3 per hour as
computed from the test time? Most observers would
disagree with such an assessment and will find it more
reasonable to take into account the occurrence rate of the
triggering events in the environment in which this
program will operate. Assume that power interruptions
normally occur only once a year, and sensor failures to
zero are expected to occur only once every two years.
The combined probability of the joint event (assuming the
individual triggers to be independent), is therefore well
over 10-7 per hour. The second test case that triggered a
failure (one sensor high and one low), has an even lower
probability. After the software has been modified so that
it will not fail again due to these triggers, its failure
probability will be much lower than that computed from
the test time.

A quantitative assessment will consider the total
number of test cases that had been used and the
probability of the natural occurrence of the simulated
conditions. To illustrate the basics of the quantitative
assessment, assume that during the 1,000 hours of test
there were 10,000 test cases that simulated conditions that
are expected to arise more frequently than once per
10,000,000 hours and 1,000 test cases simulating
conditions that are expected to occur less frequently.
Since the only failures observed were due to the second
category, and since there was a ten-fold greater
opportunity for failures under the first category, it can be
reasoned that the failure rate in the natural environment is
expected to be not more than 10-7 per hour. The
mathematical formulation of this approach is based on the
probability of drawing black and white balls from an urn
[Hecht96].

Conclusions
Reliability assessments based on fault density and

reliability growth models support planning and
comparative evaluations but are usually not sufficiently
validated to be a credible basis for stating that a software
product has attained a required reliability, particularly
when the required reliability is high. Structured

dependability models can furnish estimates that are more
precise and that also identify the elements where
reliability improvement will provide the greatest benefit.
They are well suited for designing and maintaining highly
dependable computer systems intended for flight control,
ground transportation, air traffic control, and nuclear
power plant safety functions.

 Except under unusually favorable circumstances,
none of these methods can currently assess whether a
software product meets requirements for failure rates of
less than 10-6 per hour. The rare events approach,
described in the preceding section, has the potential for
being useful for applications that demand the highest
dependability, but it is the least validated of the
methodologies discussed here. Because of the constantly
increasing use of software based systems in critical
applications, further research into software reliability
assessment is urgently needed.

References

[Abdel-Ghaly86] A. A. Abdel-Ghaly, P. Y. Chan and B.
Littlewood, �Evaluation of Competing Software Reliability
Predictions�, IEEE Transactions on Software Engineering, vol
SE-12 no. 9, September 1986, pp. 950-967

[ANSI92] �American National Standard, Recommended
Practice for Software Reliability�, American National Standards
Institute, ANSI/AIAA R-013-1992

[Butler93] R. W. Butler and G. B. Finelli, �The Infeasibility of
Quantifying the Reliability of Life-Critical Real-Time
Software�, IEEE Transactions on Software Engineering, vol
SE19 no. 1, pp. 3 - 12, January 1993

[Butner80] S.E. Butner and R.K. Iyer, "A Statistical Study of
Reliability and System Load at SLAC," Proc. 10th Int. Symp.
Fault-Tolerant Computing, pp. 207-209, Oct. 1980.

[Castillo81], X. Castillo and D.P. Siewiorek, "Workload,
Performance, and Reliability of Digital Computer Systems,"
Proc. 11th Int. Symp. Fault-Tolerant Computing, pp. 84-89,
July 1981.

[Farr93] W. H. Farr and O. Smith, �Statistical Modeling and
Estimation Functions forSoftware (SMERFS) � Users Guide�
NSWCDD TR84-371, Revision 3, September 1993

[Friedman 92] Michael Friedman, �Methodology for Software
Reliability Prediction and Assessment� Report RL-TR-92-52,
Rome Laboratory 1992 (2 volumes)

[Hecht94] Herbert Hecht and Patrick Crane, "Rare
Conditions and their Effect on Software Failures"
Proceedings of the 1994 Reliability and Maintainability
Symposium, pp. 334 - 337, January 1994

 [Hecht96] Herbert Hecht and Myron Hecht, �Quality
Assurance and Testing for Safety Systems� Proc.
CADTED, Beijing, July 1996

[Hsueh87] M. C. Hsueh and R. K. Iyer, �A Measurement-Based
Model of Software Reliability in a Production Environment�
Proceedings of the 11th Annual Computer Software and
Applications Conference, pp. 354-360, October 1987

[Iyer93] R.K. Iyer and D. Tang, �Experimental Analysis of
Computer System Dependability� Technical Report
CRHC-93-15, Center for Reliable and High-Performance
Computing, University of Illinois at Urbana-Champaign, July
1993.

[Lee93] I. Lee, D. Tang, R.K. Iyer, and M.C. Hsueh,
"Measurement-Based Evaluation of Operating System Fault
Tolerance," IIEEE Transactions on Reliability, pp. 238-249,
June 1993.

[Leveson95] Nancy G. Leveson, Safeware, Addison Wesley,
Reading, Mass., 1995

[Tang92] D. Tang and R.K. Iyer, "Analysis and Modeling of
Correlated Failures in Multicomputer Systems," IIEEE Trans.
Computers Vol. 41, No. 5, pp. 567-577, May 1992.

[Tang95] D. Tang and M. Hecht, �Evaluation of Software
Dependability Based on Stability Test Data� Proc. 11th
Int. Symp. Fault-Tolerant Computing, Pasadena,
California, June 1995

